Organic semiconductors in potentiometric gas sensors

Review

Abstract

Solid-state potentiometric sensors based on the chemical modulation of the work function of organic semiconductors are discussed. The theory of the chemical work function modulation is briefly reviewed. There are several sensor configurations, in which this transduction principle can be employed. First is the Kelvin probe, second is the chemically sensitive field-effect transistor in which the conventional metal gate of the silicon-based transistor has been replaced by an organic semiconductor. Chemical modulation of work function enters also into the operation of the third type of sensor discussed in this review, on “organic field-effect transistor”. It is shown that in reality such sensors are “field-modulated chemiresistors”, rather than potentiometric sensors.

Keywords

Potentiometric gas sensor Work function Kelvin probe CHEMFET Field-modulated chemiresistors OFET 

References

  1. 1.
    Lundstrom I, Shivaraman S, Svensson C, Lundkvist L (1975) Appl Phys Lett 26:55–57 doi:10.1063/1.88053 CrossRefGoogle Scholar
  2. 2.
    Janata J (1991) Anal Chem 63:2546–2550 doi:10.1021/ac00022a003 CrossRefGoogle Scholar
  3. 3.
    Blackwood D, Josowicz M (1991) J Phys Chem 95:493–502 doi:10.1021/j100154a086 CrossRefGoogle Scholar
  4. 4.
    Li J, Janata J, Josowicz M (1996) Electroanalysis 8:778–783 doi:10.1002/elan.1140080814 CrossRefGoogle Scholar
  5. 5.
    Janata J, Josowicz M (1997) Solid State Ionics 94:209–215CrossRefGoogle Scholar
  6. 6.
    Janata J, Josowicz M (1998) Acc Chem Res 31:241–248 doi:10.1021/ar9700668 CrossRefGoogle Scholar
  7. 7.
    Janata J, Josowicz M (1997) Anal Chem 69:293A–296AGoogle Scholar
  8. 8.
    Sze SM (1981) Physics of semiconductor devices. Wiley, New YorkGoogle Scholar
  9. 9.
    Janata J (1989) Principles of chemical sensors. Plenum, New YorkGoogle Scholar
  10. 10.
    Saheb A, Josowicz M, Janata J (2008) Anal Chem 80:4214–4219CrossRefGoogle Scholar
  11. 11.
    Buchler JW (1975) Porphyrins and metalloporphyrins. In: Smith KM (ed) Elsevier, Amsterdam, p 157Google Scholar
  12. 12.
    Spadavecchia J, Ciccarella G, Rella R, Capone S, Siciliano P (2003) Sens Actuators B 96:489–497CrossRefGoogle Scholar
  13. 13.
    Gu Ch, Sun LY, Zhang T, Li TJ (1996) Thin Solid Films 284–285:863–865 doi:10.1016/S0040-6090(95)08464-9 CrossRefGoogle Scholar
  14. 14.
    Bohrer FI, Sharoni A, Colesniuc C, Park J, Schuller IK, Kummel AC et al (2007) JACS 129:5640–5646 doi:10.1021/ja0689379 CrossRefGoogle Scholar
  15. 15.
    Bouvet M (2006) Anal Bioanal Chem 384:366–373 doi:10.1007/s00216-005-3257-6 CrossRefGoogle Scholar
  16. 16.
    Guillaud G, Simon J, Germain JP (1998) Coord Chem Rev 178–180:1433–1484 doi:10.1016/S0010-8545(98)00177-5 CrossRefGoogle Scholar
  17. 17.
    Andersson M, Holmberg M, Lundstrom I, Lloyd-Spetz A, Martensson P, Paolesse R et al (2001) Sens Actuators B 71:567–571 doi:10.1016/S0925-4005(01)00691-8 CrossRefGoogle Scholar
  18. 18.
    Oprea A, Weimar U, Simon E, Fleischer M, Frerichs H-P, Wilbertz C et al (2006) Sens Actuators B 118:249–254 doi:10.1016/j.snb.2006.04.054 CrossRefGoogle Scholar
  19. 19.
    D’Amico A, Di Natale C, Paolesse R, Macagnano A, Mantini A (2000) Sens Actuators B65:209–215Google Scholar
  20. 20.
    Parra V, Vilar MR, Battaglini N, Ferraria AM, do Rego AMB, Boufi S et al (2007) Langmuir 23:3712–3722 doi:10.1021/la063114i CrossRefGoogle Scholar
  21. 21.
    Hatchett DW, Josowicz M (2008) Chem Rev 108:746–769Google Scholar
  22. 22.
    Nicolas-Debarnot D, Poncin-Epaillard F (2003) Anal Chim Acta 475:1–15 doi:10.1016/S0003-2670(02)01229-1 CrossRefGoogle Scholar
  23. 23.
    Li GF, Josowicz M, Janata J (2002) Electrochem Solid State Lett 5:D5–D8 doi:10.1149/1.1454548 CrossRefGoogle Scholar
  24. 24.
    Bai H, Shi GQ (2007) Sensors 7(3):267–307CrossRefGoogle Scholar
  25. 25.
    Josowicz M, Janata J (1986) Anal Chem 58:514–517 doi:10.1021/ac00294a003 CrossRefGoogle Scholar
  26. 26.
    Ruangchuay L, Sirivat A, Schwank J (2004) Synth Met 140:15–21 doi:10.1016/S0379-6779(02)01319-X CrossRefGoogle Scholar
  27. 27.
    Potje-Kamloth K (2002) Crit Rev Anal Chem 32:121–140 doi:10.1080/10408340290765489 CrossRefGoogle Scholar
  28. 28.
    Potje-Kamloth K, Polk BJ, Josowicz M, Janata J (2001) Adv Mater 13:1797–1800 doi:10.1002/1521-4095(200112)13:23<1797::AID-ADMA1797>3.0.CO;2-7 CrossRefGoogle Scholar
  29. 29.
    Cabala R, Meister V, Potje-Kamloth K (1997) J Chem Soc, Faraday Trans 93:131–137 doi:10.1039/a604780g CrossRefGoogle Scholar
  30. 30.
    Matsubara I, Hosono K, Murayama N, Shin W, Izu N (2004) Bull Chem Soc Jpn 77:1231–1237 doi:10.1246/bcsj.77.1231 CrossRefGoogle Scholar
  31. 31.
    Smith A-J, Josowicz M, Janata J (2003) J Electrochem Soc 150:E384–E388 doi:10.1149/1.1589762 CrossRefGoogle Scholar
  32. 32.
    Smith A-J, Josowicz M, Engelhard M, Baer DR, Janata J (2005) Phys Chem Chem Phys 7:3619–3625 doi:10.1039/b507099f CrossRefGoogle Scholar
  33. 33.
    Domansky K, Li J, Janata J (1997) J Electrochem Soc 144:L75–L78 doi:10.1149/1.1837558 CrossRefGoogle Scholar
  34. 34.
    Domansky K, Baldwin DL, Grate JW, Hall TB, Li J, Josowicz M, Janata J (1998) Anal Chem 70:473–481 doi:10.1021/ac970427x CrossRefGoogle Scholar
  35. 35.
    Potje-Kamloth K (2008) Chem Rev 108:367–399 doi:10.1021/cr0681086 CrossRefGoogle Scholar
  36. 36.
    Janata J, Josowicz M (2003) Nat Mater 2:19–24 doi:10.1038/nmat768 CrossRefGoogle Scholar
  37. 37.
    Warner RM Jr, Grung BL (1983) Transistors. Wiley, New YorkGoogle Scholar
  38. 38.
    Barbe DF, Westgate CR (1970) J Phys Chem Solids 31:2679 doi:10.1016/0022-3697(70)90265-9 CrossRefGoogle Scholar
  39. 39.
    Petrova ML, Rozenshtein LD (1970) Sov Phys-Solid State 756–758Google Scholar
  40. 40.
    Koezuka H, Tsumura A, Ando T (1987) Synth Met 18:699–704 doi:10.1016/0379-6779(87)90964-7
  41. 41.
    Horowitz G, Peng D, Fichou F, Garnier F (1990) Appl Phys Lett 67:528Google Scholar
  42. 42.
    Dodabalapur A, Katz HE, Torsi L, Haddon RC (1995) Science 269:156 doi:10.1126/science.269.5230.1560 CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Gundlach DJ, Jia LL, Jackson TN (2001) IEEE Elec Dev Lett 22:571–573 doi:10.1109/55.974580 CrossRefGoogle Scholar
  45. 45.
    Klauk H, Schmid G, Radlik W, Weber W, Zhou L, Sheraw CD et al (2003) Solid State Electron 47:297 doi:10.1016/S0038-1101(02)00210-1 CrossRefGoogle Scholar
  46. 46.
    Pesavento PV, Chesterfield RJ, Newman CR, Frisbie CD (2004) J Appl Phys 96:7312 doi:10.1063/1.1806533 CrossRefGoogle Scholar
  47. 47.
    Chen H, Josowicz M, Potje-Kamloth K, Janata J (2004) Chem Mater 16:4728 doi:10.1021/cm040101m CrossRefGoogle Scholar
  48. 48.
    Chen H, Rambathla A, Potje-Kamloth K, Janata J (2007) J Electrochem Soc 154:H354–H360Google Scholar
  49. 49.
    Torsi L, Dodabalapur A, Sabbatini L, Zambonin PG (2000) Sens Actuators B 67:312–316CrossRefGoogle Scholar
  50. 50.
    Torsi L, Lovinger AJ, Crone B, Someya T, Dodabalapur A, Katz HE et al (2002) J Phys Chem B 106:12563 doi:10.1021/jp021473q CrossRefGoogle Scholar
  51. 51.
    Yang RD, Gredig T, Colesniuc CN, Park J, Schuller IK, Trogler IK et al (2007) Appl Phys Lett 90:263506CrossRefGoogle Scholar
  52. 52.
    Miller KA, Yang RD, Hale MJ, Park J, Fruhberger B, Colesniuc CN, Schuller IK, Kummel AC, Trogler WC (2006) J Phys Chem B 110:361CrossRefGoogle Scholar
  53. 53.
    Fukuda H, Yamagishi Y, Ise M, Takano N (2005) Sens Actuators B108:414Google Scholar
  54. 54.
    Huang J, Miragliotta J, Becknell A, Katz HE (2007) J Am Chem Soc 129:9366CrossRefGoogle Scholar
  55. 55.
    Bora M, Schut D, Baldo MA (2007) Anal Chem 79:3298 doi:10.1021/ac061904r CrossRefGoogle Scholar
  56. 56.
    Torsi L, Dodabalapur A (2005) Anal Chem 77:380A–387AGoogle Scholar
  57. 57.
    Janata J (2003) Phys Chem Chem Phys 5:51–55 doi:10.1039/b307730f CrossRefGoogle Scholar
  58. 58.
    See KC, Becknell AM, Katz HE (2007) Adv Math 19:3322–3327 doi:10.1002/adma.200602924 CrossRefGoogle Scholar
  59. 59.
    Yang RD, Gredig T, Colesniuc CN, Park J, Schuller IK, Trogler IK et al (2007) Appl Phys Lett 90:263506–263547 doi:10.1063/1.2749092 CrossRefGoogle Scholar
  60. 60.
    Fukuda H, Yamagishi Y, Ise M, Takano N (2005) Sens Actuators B108:414Google Scholar
  61. 61.
    Locklin J, Bao Z (2006) Anal Bioanal Chem 384:336–342 doi:10.1007/s00216-005-0137-z CrossRefGoogle Scholar
  62. 62.
    Torsi L, Tanese MC, Cioffi N, Gallazi MC, Sabbatini L, Zambonin PG et al (2003) J Phys Chem B 107:7589–7594 doi:10.1021/jp0344951 CrossRefGoogle Scholar
  63. 63.
    Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ et al (2001) Appl Phys Lett 78:2229–2231 doi:10.1063/1.1360785 CrossRefGoogle Scholar
  64. 64.
    Wang L, Fine D, Sharma D, Torsi L, Dodabalapur A (2006) Anal Bioanal Chem 384:310–321CrossRefGoogle Scholar
  65. 65.
    Mas-Torrent M, Rovira C (2008) Chem Soc Rev 37:827–838 doi:10.1039/b614393h CrossRefGoogle Scholar
  66. 66.
    Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L et al (2008) Nat Mater 7:412–417 doi:10.1038/nmat2167 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations