Element profiles in galvanostatically polarized K+-selective all-solid-state sensors with poly(vinyl chloride)-based membranes

  • P. Pawłowski
  • A. Michalska
  • M. Wojciechowski
  • J. Golimowski
  • E. Bulska
  • K. Maksymiuk
Original Paper

Abstract

The influence of galvanostatic polarization on ion concentration profiles in all-solid-state ion-selective sensors was studied. As a model system K+-selective electrode with poly(vinyl chloride)-based membrane, ionophore–valinomycin and polypyrrole doped by chloride ions as ion-to-electron transducer was selected. The ion exchanger—a typical component of ion-selective membrane—was replaced by lipophilic salt: tetradodecylammonium tetrakis(4-chlorophenyl) borate to avoid spontaneous extraction of potassium ions. Potassium, sodium, and chlorine distribution within the sensor phases were studied using laser ablation micro-sampling followed by inductively coupled plasma mass spectrometry measurements. The experiments revealed accumulation of potassium ions in course of cathodic galvanostatic polarization, with concentration decreasing by moving inside the ion-selective membrane. The surface content of K+ ions was found to be linearly dependent on applied current. Influence of sequential anodic galvanostatic polarization or open circuit conditioning applied after cathodic polarization revealed only limited recovery of the initial concentration profiles in the membrane.

Keywords

Potassium selective electrode Chronopotentiometry LA ICP MS Elements distribution profile Polypyrrole 

Notes

Acknowledgement

This work was supported from scientific research funds (Poland) within the research project N204 242234 for years 2008-2011 (AM, WJ, KM) and from the project 120000-5011/68-BW-175616 at Warsaw University (MW).

References

  1. 1.
    Sokalski T, Zwickl T, Bakker E, Pretsch E (1999) Anal Chem 71:1204–1209CrossRefGoogle Scholar
  2. 2.
    Lindner E, Buck RP (2000) Anal Chem 72:336A–345ACrossRefGoogle Scholar
  3. 3.
    Bakker E, Pretsch E (2005) Trends Anal Chem 24:199–207CrossRefGoogle Scholar
  4. 4.
    Bobacka J, Ivaska A, Lewenstam A (2008) Chem Rev 108:329–351CrossRefGoogle Scholar
  5. 5.
    Bobacka J (2006) Electroanalysis 18:7–18CrossRefGoogle Scholar
  6. 6.
    Michalska A (2006) Anal Bioanal Chem 384:391–406CrossRefGoogle Scholar
  7. 7.
    Igelhart ML, Buck RP, Pungor E (1988) Anal Chem 60:290–295CrossRefGoogle Scholar
  8. 8.
    Nahir TM, Buck RP (1993) J Phys Chem 97:12363–12372CrossRefGoogle Scholar
  9. 9.
    Lindner E, Gyurcsányi RE, Buck RP (1999) Electroanalysis 11:695–702CrossRefGoogle Scholar
  10. 10.
    Pergel E, Gyurcsányi RE, Tóth K, Lindner E (2001) Anal Chem 73:4249–4253CrossRefGoogle Scholar
  11. 11.
    Morf WE, Badertscher M, Zwickl T, de Rooij NF, Pretsch E (2002) J Electroanal Chem 526:19–28CrossRefGoogle Scholar
  12. 12.
    Bedlechowicz I, Sokalski T, Lewenstam A, Maj-Żurawska M (2005) Sens Actuators B 108:836–839CrossRefGoogle Scholar
  13. 13.
    Michalska A, Dumańska J, Maksymiuk K (2003) Anal Chem 75:4964–4974CrossRefGoogle Scholar
  14. 14.
    Michalska A (2005) Electroanalysis 17:400–407CrossRefGoogle Scholar
  15. 15.
    Pawłowski P, Michalska A, Maksymiuk K (2006) Electroanalysis 18:1339–1346CrossRefGoogle Scholar
  16. 16.
    Shvarev A, Bakker E (2003) Anal Chem 75:4541–4550CrossRefGoogle Scholar
  17. 17.
    Makarychev-Mikhailov S, Shvarev A, Bakker E (2006) Anal Chem 78:2744–2752CrossRefGoogle Scholar
  18. 18.
    Shvarev A, Bakker E (2005) Anal Chem 77:5221–5228CrossRefGoogle Scholar
  19. 19.
    Gemene KL, Shvarev A, Bakker E (2007) Anal Chim Acta 583:190–196CrossRefGoogle Scholar
  20. 20.
    Perera H, Shvarev A (2007) J Am Chem Soc 129:15754–15755CrossRefGoogle Scholar
  21. 21.
    Bobacka J (1999) Anal Chem 71:4932–4937CrossRefGoogle Scholar
  22. 22.
    Bobacka J, Lewenstam A, Ivaska A (2001) J Electroanal Chem 509:27–30CrossRefGoogle Scholar
  23. 23.
    Zook JM, Buck RP, Gyurcsanyi RE, Lindner E (2008) Electroanalysis 20:259–269CrossRefGoogle Scholar
  24. 24.
    Zook JM, Buck RP, Langmaier J, Lindner E (2008) J Phys Chem B 112:2008–2015CrossRefGoogle Scholar
  25. 25.
    Schneider B, Zwickl T, Federer B, Pretsch E, Lindner E (1996) Anal Chem 68:4342–4350CrossRefGoogle Scholar
  26. 26.
    Lindner E, Zwickl T, Bakker E, Lan BTT, Tóth K, Pretsch E (1998) Anal Chem 70:1176–1181CrossRefGoogle Scholar
  27. 27.
    Gyurcsányi R, Lindner E (2002) Anal Chem 74:4060–4068CrossRefGoogle Scholar
  28. 28.
    Gyurcsányi R, Lindner E (2005) Anal Chem 77:2132–2139CrossRefGoogle Scholar
  29. 29.
    Long R, Bakker E (2004) Anal Chim Acta 511:91–95CrossRefGoogle Scholar
  30. 30.
    Michalska A, Wojciechowski M, Bulska E, Maksymiuk K (2008) Electrochem Commun 10:61–65CrossRefGoogle Scholar
  31. 31.
    Konopka A, Sokalski T, Lewenstam A, Maj-Żurawska M (2006) Electroanalysis 18:2232–2242CrossRefGoogle Scholar
  32. 32.
    Michalska A, Wojciechowski M, Wagner B, Bulska E, Maksymiuk K (2006) Anal Chem 78:5584–5589CrossRefGoogle Scholar
  33. 33.
    Galus Z (1994) Fundamentals of electrochemical analysis. Ellis Horwood Ltd., ChichesterGoogle Scholar
  34. 34.
    Robinson RA, Stokes RH (1959) Electrolyte solutions. Butterworths, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • P. Pawłowski
    • 1
  • A. Michalska
    • 1
  • M. Wojciechowski
    • 1
  • J. Golimowski
    • 1
  • E. Bulska
    • 1
  • K. Maksymiuk
    • 1
  1. 1.Department of ChemistryWarsaw UniversityWarsawPoland

Personalised recommendations