Journal of Solid State Electrochemistry

, Volume 13, Issue 3, pp 397–406 | Cite as

Electrochemical preparation, characterization, and electrocatalytic studies of Nafion–ruthenium oxide modified glassy carbon electrode

Original Paper


Electrochemical synthesis of ruthenium oxide (RuOx) onto Nafion-coated glassy carbon (GC) electrode and naked GC electrode were carried out by using cyclic voltammetry. Electrochemical deposition of RuOx onto Nafion-coated electrode was monitored by in situ electrochemical quartz crystal microbalance (EQCM). Surface characterizations were performed by scanning electron microscope (SEM) and atomic force microscope (AFM). SEM and AFM images revealed that ruthenium oxide particles incorporated onto the Nafion polymer film. In addition, a GC electrode modified with ruthenium oxide–Nafion film (RuOx–Nf–GC) was shown excellent electrocatalytic activity towards dopamine (DA) and ascorbic acid (AA). The anodic peak current increases linearly over the concentration range of 50 μM–1.1 mM for DA with the correlation coefficient of 0.999, and the detection limit was found to be (S/N = 3) 5 μM. Owing to the catalytic effect of the modified film towards DA, the modified electrode resolved the overlapped voltammetric responses of AA and DA into two well-defined voltammetric peaks with peak-to-peak separation about 300 mV. Here, RuOx–Nf–GC electrode employed for determination of DA in the presence of AA. This modified electrode showed good stability and antifouling properties.


Ruthenium oxide Chemically modified electrode Dopamine determination Electrocatalysis Nafion 



This work was supported by the National Science Council of the Taiwan (ROC).


  1. 1.
    Adams RN (1976) Anal Chem 48:1126ACrossRefGoogle Scholar
  2. 2.
    Kutnink MA, Hawkes WC, Schaus EE, Omaye ST (1987) Anal Biochem 166:424CrossRefGoogle Scholar
  3. 3.
    Stamford JA, Justice JB Jr (1996) Anal Chem 68:359aGoogle Scholar
  4. 4.
    Winter E, de Carvalho RM, Kubota LT, Rath S (2003) J Braz Chem Soc 14:564CrossRefGoogle Scholar
  5. 5.
    Ghita M, Arrigan DWM (2004) Electrochimica Acta 49:4743CrossRefGoogle Scholar
  6. 6.
    Wring SA, Hart JP, Birch BJ (1990) Anal Chim Acta 229:63CrossRefGoogle Scholar
  7. 7.
    Lyons MEG, Breen W, Cassidy J (1991) J Chem Soc Faraday Trans 87:115CrossRefGoogle Scholar
  8. 8.
    Leal JM, Domingo PL, Garcia B, Ibeas S (1993) J Chem Soc Faraday Trans 89:3571CrossRefGoogle Scholar
  9. 9.
    Mao H, Pickup PG (1989) J Electroanal Chem 265:127CrossRefGoogle Scholar
  10. 10.
    Zhang L, Lin X, Sun Y (2001) Analyst 126:1760CrossRefGoogle Scholar
  11. 11.
    Fragoso A, Almirall E, Cao R, Echegoyen L, González-Jontec R (2004) Chem Commun 2230, DOI  10.1039/b407792j
  12. 12.
    Olivia H, Sarada BV, Shin D, Rao TN, Fujishima A (2002) Analyst 127:1572CrossRefGoogle Scholar
  13. 13.
    Chen W, Lin X, Huang L, Luo H (2005) Microchim Acta 151:101CrossRefGoogle Scholar
  14. 14.
    Zhao H, Zhang Y, Yuan Z (2001) Analyst 126:358CrossRefGoogle Scholar
  15. 15.
    Selvaraju T, Ramaraj R (2003) Electrochem Commun 5:667CrossRefGoogle Scholar
  16. 16.
    Jin G, Zhang Y, Cheng W (2005) Sens Actuators B 107:528CrossRefGoogle Scholar
  17. 17.
    Kumar SA, Chen SM (2007) J Solid State Electrochem 11:993CrossRefGoogle Scholar
  18. 18.
    Wang Z, Liu J, Liang Q, Wang Y, Luo G (2002) Analyst 127:653CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Pan Y, Su S, Zhang L, Li S, Shao M (2007) Electroanalysis 19:1695CrossRefGoogle Scholar
  20. 20.
    Chen SM, Chzo WY (2006) J Electroanal Chem 587:226CrossRefGoogle Scholar
  21. 21.
    Zare HR, Nasirizadeh N, Mazloum Ardakani M (2005) J Electroanal Chem 577:25CrossRefGoogle Scholar
  22. 22.
    Alarcón-Angeles G, Corona-Avendaño S, Palomar-Pardavé M, Rojas-Hernández A, Romero-Romo M, Ramírez-Silva MT (2008) Electrochimica Acta 53:310Google Scholar
  23. 23.
    Lin X, Zhuanga Q, Chena J, Zhanga S, Zheng Y (2007) Sens Actuators B 125:240CrossRefGoogle Scholar
  24. 24.
    Ashok Kumar S, Tang CF, Chen SM (2008) Talanta 74:860CrossRefGoogle Scholar
  25. 25.
    Lin X, Zhang Y, Chen W, Wu P (2007) Sens Actuators B 122:309CrossRefGoogle Scholar
  26. 26.
    Hu GZ, Zhang DP, Wu WL, Yang ZS (2008) Colloids Surf B Biointerfaces 62:199CrossRefGoogle Scholar
  27. 27.
    Lai GS, Zhang HL, Han DY (2008) Microchimica Acta 160:233CrossRefGoogle Scholar
  28. 28.
    Thiagarajan S, Chen SM (2007) Talanta 74:212CrossRefGoogle Scholar
  29. 29.
    Leech D, Wang J, Smyth MR (1991) Electroanalysis 3:37CrossRefGoogle Scholar
  30. 30.
    Lyons MEG, Fitzgerald CA, Smyth MR (1994) Analyst 119:855CrossRefGoogle Scholar
  31. 31.
    Wang J, Lin Y (1994) Electroanalysis 6:125CrossRefGoogle Scholar
  32. 32.
    Kulesza JP, Faulkner LR (1993) J Electrochem Soc 140:L66CrossRefGoogle Scholar
  33. 33.
    Cataldi TRI, Centonze D, Guerrieri A (1995) Anal Chem 67:101CrossRefGoogle Scholar
  34. 34.
    Cox JA, Kulesza PJ (1984) Anal Chem 56:1021CrossRefGoogle Scholar
  35. 35.
    Casella IG, Guascito MR, Salvi AM, Desimoni E (1997) Anal Chim Acta 354:333CrossRefGoogle Scholar
  36. 36.
    Zen JM, Chen IL (1997) Electroanalysis 9:537CrossRefGoogle Scholar
  37. 37.
    Shakkthivel P, Chen SM (2007) Biosens Bioelectron 22:1680CrossRefGoogle Scholar
  38. 38.
    Chen SM, Chen JY, Vasantha VS (2006) Electrochim Acta 52:455CrossRefGoogle Scholar
  39. 39.
    Chen SM, Lu MF, Lin KC (2005) J Electroanal Chem 579:163CrossRefGoogle Scholar
  40. 40.
    Zen JM, Kumar AS, Chang MR (2000) Electrochim Acta 45:1691CrossRefGoogle Scholar
  41. 41.
    Paixão TRLC, Bertotti M (2007) Electrochim Acta 52:2181CrossRefGoogle Scholar
  42. 42.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  43. 43.
    Brown AP, Anson FC (1977) Anal Chem 49:1589CrossRefGoogle Scholar
  44. 44.
    Laviron E (1982) In: Bard AJ (ed) Electroanalytical chemistry, 12. Marcel Dekker, New York, pp 53–157Google Scholar
  45. 45.
    Kumar AS, Pillai KC (2000) J solid state electrochem 4:408CrossRefGoogle Scholar
  46. 46.
    Sauerbrey G (1959) Physik Z 155:206CrossRefGoogle Scholar
  47. 47.
    Brukenstein S, Shay M (1985) Electrochim Acta 30:1295CrossRefGoogle Scholar
  48. 48.
    Martin CR, Van Dyke LS (1992) In: Murray RW (ed) Molecular design of electrode surfaces. Wiley, New York, pp 403–424Google Scholar
  49. 49.
    Lyons MEG (1994) In: Lyons MEG (ed) Electroactive polymer electrochemistry, part I. Plenum Press, New York, pp 65–116Google Scholar
  50. 50.
    Schopf G, Kozmehl G (1997) Polythiophenes—electrically conductive polymers. Springer, Germany, p 80Google Scholar
  51. 51.
    Hernandez P, Sanchez I, Paton F, Hernandez L (1998) Talanta 46:985CrossRefGoogle Scholar
  52. 52.
    Chen SM, Lin KC (2002) J Electroanal Chem 523:93CrossRefGoogle Scholar
  53. 53.
    Durand RR Jr, Bencosme CS, Collman JP, Anson FC (1983) J Am Chem Soc 105:2710CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Chien-Chieh Ti
    • 1
  • S. Ashok Kumar
    • 1
  • Shen-Ming Chen
    • 1
  1. 1.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiRepublic of China

Personalised recommendations