Journal of Solid State Electrochemistry

, Volume 12, Issue 11, pp 1469–1479 | Cite as

Nickel surface anodic oxidation and electrocatalysis of oxygen evolution

  • K. JuodkazisEmail author
  • J. Juodkazytė
  • R. Vilkauskaitė
  • V. Jasulaitienė
Original Paper


The processes of nickel surface anodic oxidation taking place within the range of potentials preceding oxygen evolution reaction (OER) in the solutions of 1 M KOH, 0.5 M K2SO4, and 0.5 M H2SO4 have been analyzed in the present paper. Metallic nickel, thermally oxidized nickel, and black nickel coating were used as Ni electrodes. The methods of cyclic voltammetry and X-ray photoelectron spectroscopy were employed. The study was undertaken with a view to find the evidence of peroxide-type nickel surface compounds formation in the course of OER on the Ni electrode surface. On the basis of experimental results and literature data, it has been suggested that in alkaline solution at E ≈ 1.5 V (RHE) reversible electrochemical formation of Ni(IV) peroxide takes place according to the reaction as follows: \({\text{NiO}}\left( {{\text{OH}}} \right)_2 + 2{\text{OH}}^ - \Leftrightarrow {\text{NiOO}}_2 + 2{\text{H}}_2 {\text{O + 2e}}^ - .\) This reaction accounts for both the underpotential (with respect to \(E_{{{{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} } \mathord{\left/ {\vphantom {{{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} } {{\text{H}}_{\text{2}} {\text{O}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}}}}^0 = 1.77\;{\text{V}}\)) formation of O2 from NiOO2 peroxide and also small experimental values of dE/dlgi slope (<60 mV) at low anodic current densities, which are characteristic for the two-electron transfer process. It has been inferred that the composition of the γ-NiOOH phase, indicated in the Bode and revised Pourbaix diagrams, should be ∼5/6 NiOOH + ∼1/6 NiOO2. The schemes demonstrating potential-dependent transitions between Ni surface oxygen compounds are presented, and the electrocatalytic mechanisms of OER in alkaline, acid, and neutral medium have been proposed.


Nickel Surface Oxidation Peroxide Oxygen evolution reaction 


  1. 1.
    Trasatti S (1980) Electrodes of conductive metallic oxides, parts A, B. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397CrossRefGoogle Scholar
  3. 3.
    Krishtalik LI (1981) Electrochim Acta 26:329CrossRefGoogle Scholar
  4. 4.
    Shultze JW, Lohrengel MM (2000) Electrochim Acta 45:2499CrossRefGoogle Scholar
  5. 5.
    Jin S, Ye S (1996) Electrochim Acta 41:827CrossRefGoogle Scholar
  6. 6.
    Da Silva LA, Alves VA, Trasatti S, Boodts JFC (1997) J Electroanal Chem 427:97CrossRefGoogle Scholar
  7. 7.
    Wu G, Li N, Zhou D-R, Mitsuo K, Xu B-Q (2004) J Solid State Chem 177:3682CrossRefGoogle Scholar
  8. 8.
    Jirkovsky J, Markova M, Krtil P (2006) Electrochem Commun 8:1417CrossRefGoogle Scholar
  9. 9.
    Vazquez-Gomez L, Ferro S, De Battisti A (2006) Appl Catal B Environ 67:34CrossRefGoogle Scholar
  10. 10.
    Godinho MI, Catarino MA, Da Silva Pereira MI, Mendonca MH, Costa FM (2002) Electrochim Acta 47:4307CrossRefGoogle Scholar
  11. 11.
    Wang X, Luo H, Yang H, Sebastian PJ, Gamboa SA (2004) Int J Hydrogen Energy 29:967CrossRefGoogle Scholar
  12. 12.
    Chin B, Lin H, Li J, Wang N, Yang J (2006) Int J Hydrogen Energy 31:1210CrossRefGoogle Scholar
  13. 13.
    Aromaa J, Forsen O (2006) Electrohim Acta 51:6104CrossRefGoogle Scholar
  14. 14.
    Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K (1997) Mater Trans JIM 38:899Google Scholar
  15. 15.
    Corrigan DA (1987) J Electrochem Soc 134:377CrossRefGoogle Scholar
  16. 16.
    Corrigan DA, Bendert RM (1989) J Electrochem Soc 136:723CrossRefGoogle Scholar
  17. 17.
    Miller EL, Rocheleau RE (1997) J Electrochem Soc 144:1995CrossRefGoogle Scholar
  18. 18.
    Korovin NV, Kasatkin EV (1993) Russ Electrochem 29:448Google Scholar
  19. 19.
    Sattar MA, Conway BE (1969) Electrochim Acta 14:695CrossRefGoogle Scholar
  20. 20.
    Conway BE, Sattar MA, Gilroy D (1969) Electrochim Acta 14:677CrossRefGoogle Scholar
  21. 21.
    Hoare JP (1968) The electrochemistry of oxygen. Wiley, New YorkGoogle Scholar
  22. 22.
    Vetter KJ (1961) Elektrochemische kinetik. Springer, BerlinGoogle Scholar
  23. 23.
    Conway BE, Liu TC (1989) Mater Chem Phys 22:163CrossRefGoogle Scholar
  24. 24.
    Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Norskov JK (2007) J Electroanal Chem 607:83CrossRefGoogle Scholar
  25. 25.
    Podobaev AN, Reformatskaya II (2006) Prot Met 42:73CrossRefGoogle Scholar
  26. 26.
    Oliveira PP, Patrito EM, Sellers H (1994) Surf Sci 313:25CrossRefGoogle Scholar
  27. 27.
    Bockris JO’M, Otagawa TJ (1984) J Electrochem Soc 131:290CrossRefGoogle Scholar
  28. 28.
    Pourbaix M (1963) Atlas d’équilibres électrochimiques. Gauthier-Villars, ParisGoogle Scholar
  29. 29.
    Bronoel G, Reby J (1980) Electrochim Acta 25:973CrossRefGoogle Scholar
  30. 30.
    Kim M-S, Hwang T-S, Kim K-B (1997) J Electrochem Soc 144:1537CrossRefGoogle Scholar
  31. 31.
    Sac-Epee N, Palacin MR, Beaudoin B, Delahaye-Vidal A, Jamin T, Chabre Y, Tarascon J-M (1997) J Electrochem Soc 144:3896CrossRefGoogle Scholar
  32. 32.
    Lu PWT, Srinivasan S (1978) J Electrochem Soc 125:1416CrossRefGoogle Scholar
  33. 33.
    Corrigan DA, Knight SL (1989) J Electrocem Soc 136:613CrossRefGoogle Scholar
  34. 34.
    O’Grady WE, Pandya KI, Swider KE, Corrigan DA (1996) J Electrochem Soc 143:1613CrossRefGoogle Scholar
  35. 35.
    Seghiouer A, Chevalet J, Barhoun A, Lantelme F (1998) J Electroanal Chem 442:113CrossRefGoogle Scholar
  36. 36.
    Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D (2006) J Electroanal Chem 587:172CrossRefGoogle Scholar
  37. 37.
    Grden M, Klimek K (2005) J Electroanal Chem 581:122CrossRefGoogle Scholar
  38. 38.
    Beverskog B, Puigdomenech I (1997) Corros Sci 39:969CrossRefGoogle Scholar
  39. 39.
    Wherens-Dijksma M, Notten PHL (2006) Electrochim Acta 51:3609CrossRefGoogle Scholar
  40. 40.
    De Souza LMM, Kong FP, McLarnon FR, Muller RH (1997) Electrochim Acta 42:1253CrossRefGoogle Scholar
  41. 41.
    Brigs D, Seach MP (1987) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Mir, MoscowGoogle Scholar
  42. 42.
    Wagner CD, Riggs WM, Davis LE, Moulder JF (1978) Handbook of X-ray photoelectron spectroscopy. Minnesota, Perkin-ElmerGoogle Scholar
  43. 43.
    Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2000) NIST Standard Reference Database 20, Version 3.4 (Web Version)Google Scholar
  44. 44.
    Barnard R, Randell CF, Tye FL (1980) J Appl Electrochem 10:109CrossRefGoogle Scholar
  45. 45.
    Barnard R, Randell CF (1982) J Appl Electrochem 12:27Google Scholar
  46. 46.
    Gregori J, Garcia-Jareno JJ, Gimenez-Romero D, Vicente F (2006) Electrochim Acta 52:658CrossRefGoogle Scholar
  47. 47.
    Krasilshchikov AI (1963) Zh Fiz Khim 37:531Google Scholar
  48. 48.
    Tsinman AI (1963) Zh Fiz Khim 37:273Google Scholar
  49. 49.
    Hodgman ChD, Lange NA (1928) Handbook of chemistry and physics, 13th edn. The Norwood Press, USAGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • K. Juodkazis
    • 1
    Email author
  • J. Juodkazytė
    • 1
  • R. Vilkauskaitė
    • 1
  • V. Jasulaitienė
    • 1
  1. 1.Institute of ChemistryVilniusLithuania

Personalised recommendations