Journal of Solid State Electrochemistry

, Volume 12, Issue 11, pp 1399–1404 | Cite as

On the charge storage mechanism at RuO2/0.5 M H2SO4 interface

  • K. Juodkazis
  • J. Juodkazytė
  • V. Šukienė
  • A. Grigucevičienė
  • A. Selskis
Original Paper

Abstract

Comparative study of capacitative properties of RuO2/0.5 M H2SO4 and Ru/0.5 M H2SO4 interfaces has been performed with a view to find out the nature of electrochemical processes involved in the charge storage mechanism of ruthenium (IV) oxide. The methods of cyclic voltammetry and scanning electron microscopy (SEM) were employed for the investigation of electrochemical behavior and surface morphology of RuO2 electrodes. It has been suggested that supercapacitor behavior of RuO2 phase in the potential E range between 0.4 and 1.4 V vs reference hydrogen electrode (RHE) should be attributed to double-layer-type capacitance, related to non-faradaic highly reversible process of \({\text{RuO}}_2^ + \cdot \left( {{\text{OH}}^ - } \right)_{{\text{ad}}} \) ionic pair formation and annihilation at RuO2/electrolyte interface as described by following summary equation:
$${\text{RuO}}_{2} \cdot {\text{H}}_{2} {\text{O}} \Leftrightarrow {\text{RuO}}^{ + }_{2} \cdot {\left( {{\text{OH}}^{ - } } \right)}_{{{\text{ad}}}} + {\text{H}}^{ + } + {\text{e}}^{ - } _{{{\left( {{\text{CB}}} \right)}}} ,$$
where \({\text{RuO}}_2^ + \) and \({\text{e}}^{ - } _{{{\left( {{\text{CB}}} \right)}}} \) represent holes and electrons in valence and conduction bands, respectively. The pseudocapacitance of interface under investigation is related to partial reduction of RuO2 layer at E < 0.2 V and its subsequent recovery during the anodic process.

Keywords

RuO2 Electrochemical supercapacitors Charge storage mechanism 

References

  1. 1.
    Hu CC, Chen WC, Chang KH (2004) J Electrochem Soc 151 A:281CrossRefGoogle Scholar
  2. 2.
    Hu CC, Chen WC (2004) Electrohim Acta 49:3469CrossRefGoogle Scholar
  3. 3.
    Conway BE (1991) J. Electrochem Soc 138:1539CrossRefGoogle Scholar
  4. 4.
    Conway BE (1999) Electrochemical supercapacitors. Plenum, New YorkGoogle Scholar
  5. 5.
    Liu T, Pell WG, Conway BE (1997) Electrochim Acta 42:3541CrossRefGoogle Scholar
  6. 6.
    Trasatti S, Buzzanca G (1971) J Electroanal Chem 29:App. 1Google Scholar
  7. 7.
    Trasatti S (1980) Electrodes of Conductive Metallic Oxides, Parts A, B. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    McKeown DA, Hagans PL, Carette LP, Russell AE, Swider KE, Rolison DR (1999) J Phys Chem B 103:4825CrossRefGoogle Scholar
  9. 9.
    Ma Z, Zheng JP, Fu R (2000) Chem Phys Lett 331:64CrossRefGoogle Scholar
  10. 10.
    Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699CrossRefGoogle Scholar
  11. 11.
    Ahn YR, Song MY, Jo SM, Park CR, Kim DY (2006) Nanotechnology 17:2865CrossRefGoogle Scholar
  12. 12.
    Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Electrochim Acta 49:313CrossRefGoogle Scholar
  13. 13.
    Sugimoto W, Yokoshima K, Murakami Y, Takasu Y (2006) Electrochim Acta 52:1742CrossRefGoogle Scholar
  14. 14.
    Burke LD, Naser NS (2005) J Appl Electrochem 35:931CrossRefGoogle Scholar
  15. 15.
    Juodkazytė J, Šebeka B, Valsiūnas I, Juodkazis K (2005) Electroanal 17:947CrossRefGoogle Scholar
  16. 16.
    Juodkazytė J, Vilkauskaitė R, Stalnionis G, Šebeka B, Juodkazis K (2007) Electroanal 19:1093CrossRefGoogle Scholar
  17. 17.
    Santos MC, Terezo AJ, Fernandes VC, Pereira EC, Bulhoes LOS (2005) J Solid State Electrochem 9:91CrossRefGoogle Scholar
  18. 18.
    Doubova LM, Daolio S, De Battisti A (2002) J Electroanal Chem 532:25CrossRefGoogle Scholar
  19. 19.
    Terezo AJ, Pereira EC (2002) Mat Lett 53:339CrossRefGoogle Scholar
  20. 20.
    Ardizzone S, Fregonara G, Trasatti S (1990) Electrochim Acta 35:263CrossRefGoogle Scholar
  21. 21.
    Patil PS, Ennaoui A, Lokhande CD, Muller M, Giersig M, Diesner K, Tributsch H (1997) Thin Solid Films 310:57CrossRefGoogle Scholar
  22. 22.
    Gujar TP, Shinde VR, Lokhande DC, Kim WY, Jung KD, Joo OS (2007) Electrochem Comm 9:504CrossRefGoogle Scholar
  23. 23.
    Chueh YL, Hsieh, Chang MT, Chou LJ, Lao, Song JH, Gan JY, Wang ZL (2007) Adv Mater 19:143CrossRefGoogle Scholar
  24. 24.
    De Almeida JS, Ahuja R (2006) Phys Rev B 73:165102CrossRefGoogle Scholar
  25. 25.
    Juodkazytė J, Vilkauskaitė R, Šebeka B, Juodkazis K (2007) Trans Met Finish 85:194CrossRefGoogle Scholar
  26. 26.
    Michell D, Rand DAJ, Woods R (1978) J Electroanal Chem 89:11CrossRefGoogle Scholar
  27. 27.
    Pourbaix M (1963) Atlas d’equilibres electrochimiques. Gauthier-Villars, ParisGoogle Scholar
  28. 28.
    Mo Y, Antonio MR, Scherson DA (2000) J Phys Chem B 104:9777CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • K. Juodkazis
    • 1
  • J. Juodkazytė
    • 1
  • V. Šukienė
    • 1
  • A. Grigucevičienė
    • 1
  • A. Selskis
    • 1
  1. 1.Institute of ChemistryVilniusLithuania

Personalised recommendations