Journal of Solid State Electrochemistry

, Volume 12, Issue 10, pp 1205–1218

Different strategies for functionalization of diamond surfaces

Review Paper

Abstract

Functionalization of diamond surfaces holds considerable promise from both fundamental and applied research aspects. This review summarizes briefly the state of the art of chemical, photochemical and electrochemical strategies for the grafting of different organic functionalities on diamond. Depending on the sought-after application and the desired physical property of diamond, halogenated, aminated, carboxylated and oxidized diamond surfaces have been proposed. After a brief introduction, the review is primarily divided into two parts, presenting chemical functionalisation strategies used on oxygen-terminated diamond, followed by methods used for the formation of C–C, C–X and C–N bonds on hydrogen-terminated diamond.

Keywords

Hydrogen-terminated diamond Oxidized diamond Surface functionalization Biomolecule immobilization Characterization 

References

  1. 1.
    Ageev VP, Chapliev NI, Konov VI, Kuzmichev AV, Pimenov SM, Ralchenko VG (1990) Phys Res 13:318Google Scholar
  2. 2.
    Matsumoto S, Sato Y, Setaka N (1981) Carbon 19:234Google Scholar
  3. 3.
    Rothschild M, Arnonr C, Ehrlich DJ (1986) J Vac Sci Technol A B4:310Google Scholar
  4. 4.
    Sappok R, Boehm HP (1968) Carbon 6:573Google Scholar
  5. 5.
    Inoue Y, Yoshimura Y, Ikeda Y, Kohno A (2000) Colloids Surf B 19:257Google Scholar
  6. 6.
    Zhang G-J, Song K-S, Nakamura Y, Ueno T, Funatsu T, Ohdomari I, Kawarada H (2006) Langmuir 22:3728–3734Google Scholar
  7. 7.
    Coffinier Y, Szunerits S, Jama C, Desmet R, Melnyk O, Marcus B, Gengembre L, Payen E, Delabouglise D, Boukherroub R (2007) Langmuir 23:4494–4497Google Scholar
  8. 8.
    Szunerits S, Jama C, Coffinier Y, Marcus B, Delabouglise D, Boukherroub R (2006) Electrochem Commun 8:1185–1190Google Scholar
  9. 9.
    Tian R-H, Rao TN, Einaga Y, Zhi J-F (2006) Chem Mater 18:939Google Scholar
  10. 10.
    Yan J-H, Song K-S, Zhang G-J, Degawa M, Sasaki Y, Ohdomari I, Kawarada H (2006) Langmuir 22:11245Google Scholar
  11. 11.
    Spitsyn BV, Bouilov LL, Derjaguin BV (1981) J Cryst Growth 52:219Google Scholar
  12. 12.
    Butler JE, Windischmann H (1998) MRS Bull 1:22Google Scholar
  13. 13.
    Sauer R (1999) Cryst Res Technol 34:227Google Scholar
  14. 14.
    Birrell J, Gerbi JE, Auciello O, Gibson JM, Johnson J, Carlisle JA (2005) Diam Relat Mater 14:86–92Google Scholar
  15. 15.
    Kulakova II (2004) Phys Solid State 46:636–43Google Scholar
  16. 16.
    Raty J-Y, Galli G (2003) Nature Mater 2:792–795Google Scholar
  17. 17.
    Wang J, Firestone MA, Auciello O, Carlisle JA (2004) Langmuir 20:11450–11456Google Scholar
  18. 18.
    Zhou D, Krauss AR, Qin LC, McCauley TG, Gruen DM, Corrigan TD, Chang RPH, Gnaser H (1997) J Appl Phys 82:4546–4550Google Scholar
  19. 19.
    Zhou D, McCauley TG, Qin LC, Krauss AR, Gruen DM (1998) J Appl Phys 83:540–543Google Scholar
  20. 20.
    Carlisle JA, Auciello O (2003) Interface 12:28Google Scholar
  21. 21.
    Gruen DM (1999) Annu Rev Mater Sci 29:211Google Scholar
  22. 22.
    Birrell J, Gerbi JE, Auciello O, Gibson J, Gruen DM, Carlisle JA (2003) J Appl Phys 93:5606Google Scholar
  23. 23.
    Bhattacharyya S, Auciello O, Birrell J, Carlisle JA, Curtis LA, Goyette AN, Gruen DM, Krauss AR, Schlueter J, Sumant A, Zapol P (2001) Appl Phys Lett 79:1441Google Scholar
  24. 24.
    Rezek B, Shin D, Nakamura Y, Nebel CE (2006) J Am Chem Soc 128:3884Google Scholar
  25. 25.
    Yang N, Uetsuka H, Watanabe H, Nakamura T, Nebel CE (2007) Chem Mater 19:2852Google Scholar
  26. 26.
    Shin D, Rezek B, Tokuda N, Takeuchi D, Watanabe H, Nakamura T, Yamamoto T, Nebel CE (2006) Phys Stat Sol (a) 13:3245Google Scholar
  27. 27.
    Ristein J, Maier F, Riedel M, Cui JB, Ley L (2000) Phys Status Solidi 181:65Google Scholar
  28. 28.
    Maier F, Riedel M, Mantel B, Ristein J, Ley L (2000) Phys Rev Lett 85:3472Google Scholar
  29. 29.
    Ri S-G, Mizumasa T, Akiba Y, Hirose Y, Kurosu T, Iida M (1995) Jpn J Appl Phys 34:5550Google Scholar
  30. 30.
    Shin D, Watanabe H, Nebel CE (2005) J Am Chem Soc 127:11237Google Scholar
  31. 31.
    Maki T, Shikama S, Komori M, Sakaguchi Y, Sakuta K, Kobayashi T (1992) Jpn J Appl Phys 31:1446Google Scholar
  32. 32.
    Albin S, Watkins L (1990) Appl Phys Lett 56:1454Google Scholar
  33. 33.
    Poferl DJ, Gardener NC, Angus JC (1973) J Appl Phys 44:1428Google Scholar
  34. 34.
    Catledge SA, Vohraa YK (1999) J Appl Phys 86:698Google Scholar
  35. 35.
    Jin S, Moustakas TD (1994) Appl Phys Lett 65:403Google Scholar
  36. 36.
    Gheeraert E, Casanova N, Tajani A, Deneuville A, Bustarret E, Garrido JA, Nebel CE, Stutzmann M (2002) Diam Relat Mater 11:289Google Scholar
  37. 37.
    Martin HB, Argoitia A, Landau U, Anderson GW, Angus JC (1996) J Electrochem Soc 143:L133Google Scholar
  38. 38.
    Swain GM, Ramesham R (1993) Anal Chem 65:345–351Google Scholar
  39. 39.
    Ferro S, De Battisti A (2003) J Phys Chem B 107:7567Google Scholar
  40. 40.
    Ferro S, De Battist A (2003) Anal Chem 75:7040–7042Google Scholar
  41. 41.
    Martin HB, Argoitia A, Angus JC, Landau U (1999) J Electrochem Soc 146:2959–2964Google Scholar
  42. 42.
    Freedman A (1994) J Appl Phys 75:3112–3120Google Scholar
  43. 43.
    Harris SJ, Belton DN (1991) App Phys Lett 57:1194Google Scholar
  44. 44.
    Kawarada H (1996) Surf Sci Rep 26:205Google Scholar
  45. 45.
    Granger MC, Swain GM (1999) J Electrochem Soc 146:4551–4558Google Scholar
  46. 46.
    Ferreira NG, Silva LLG, Corat EJ, VJ T-A (2002) Diam Relat Mater 11:1523–1531Google Scholar
  47. 47.
    Boukherroub R, Wallart X, Szunerits S, Marcus B, Bouvier P, Mermoux M (2005) Electrochem Commun 7:937–940Google Scholar
  48. 48.
    Ando T, Yamamoto K, Ishii M, Kamo M, Sato Y (1993) J Chem Soc Faraday Trans 89:3635–3640Google Scholar
  49. 49.
    Pehrsson PE, Mercer TW (2000) Surf Sci 460:49–66Google Scholar
  50. 50.
    John P, Polwart N, Troupe CE, Wilson JIB (2003) J Am Chem Soc 125:6600Google Scholar
  51. 51.
    Notsu H, Yagi I, Tatsuma T, Tryk DA, Fujishima A (1999) Electrochem Solid-State Lett 2:522Google Scholar
  52. 52.
    Yagi I, Notsu H, Kondo T, Tryk DA, Fujishima A (1999) J Electroanal Chem 473:173Google Scholar
  53. 53.
    Delabouglise D, Marcus B, Mermoux M, Bouvier P, Chane-Tune J, Petit J-P, Mailley P, Livache T (2003) Chem Comm 21:2698–2699CrossRefGoogle Scholar
  54. 54.
    Goeting CH, Marken F, Gutiérrez-Sosa A, Compton RC (2000) Diam Relat Mat 9:390–396Google Scholar
  55. 55.
    Notsu H, Yagi I, Tatsuma T, Tryk DA, Fujishima A (2000) J Electroanal Chem 492:31–37Google Scholar
  56. 56.
    Popa E, Notsu H, Miwa T, Tryk DA, Fujishima A (1999) Electrochem Solid State Lett 2:49–51Google Scholar
  57. 57.
    Ohta R, Saito N, Inoue Y, Sugimura H, Takai O (2004) J Vac Sci Technol A 22:2005–2009Google Scholar
  58. 58.
    Boukherroub R, Wallart X, Szunerits S, Marcus B, Bouvier P, Mermoux M (2005) Electrochem Comm 7:937–940Google Scholar
  59. 59.
    Kanazawa H, Song K-S, Sakai T, Nakamura Y, Umezawa H, Tachiki M, Kawarada H (2003) Diamond Relat Mater 12:618–622Google Scholar
  60. 60.
    Riedel M, Ristein J, Ley L (2004) Diam Relat Mater 13:746–750Google Scholar
  61. 61.
    Ferro S, Battosto AD (2002) Electrochim Acta 47:1641–1649Google Scholar
  62. 62.
    Santana MHP, Faria LAD, Boodts JFC (2005) Electrochim Acta 50:2017–2027Google Scholar
  63. 63.
    Salazar-Banda G, Andrade Ls, Nascente PAP, Pinzani PS, Rocha-Filho R, Avaca LA (2006) Electrochim Acta 51:4873Google Scholar
  64. 64.
    Popa E, Notsu H, Miwa T, Tryk DA, Fujishima J (1999) Electroanal Chem 473:173Google Scholar
  65. 65.
    Fortin E, Chane-Tune J, Mailley P, Szunerits S, Marcus B, Petit J-P, Mermoux M, Vieil E (2004) Bioelectrochemistry 63:303–306Google Scholar
  66. 66.
    Foord JS, Hian LC, Jackman RB (2001) Diam Relat Mater 10:710–714Google Scholar
  67. 67.
    Foord S, Lau CH, Hiramatsu M, Jackman RB, Nebel CE, Bergonzo P (2002) Diam Relat Mater 11:856–860Google Scholar
  68. 68.
    Shirafuji J, Sugino T (1996) Diam Relat Mater 5:706–713Google Scholar
  69. 69.
    Wilson JIB, Walton JS, Beamson G (2001) J Electron Spectrosc Relat Phenom 121:183–201Google Scholar
  70. 70.
    Yamada T, Yokoyama T, Sawabe A (2002) Diam Relat Mater 11:780–783Google Scholar
  71. 71.
    Saby C, Muret P (2005) Diam Relat Mater 11:851–855Google Scholar
  72. 72.
    Boukherroub R, Szunerits S, Bouvier P, Mermeaux M (2005) Electrochem CommGoogle Scholar
  73. 73.
    Notsu H, Fukazawa T, Tatsuma T, Tryk DA, Fujiwara Y (2001) Electrochem Solid-State Lett 4:H1–H3Google Scholar
  74. 74.
    Actis P, Manesse M, Nunes-Kirchner C, Wittstock G, Coffinier Y, Boukherroub R, Szunerits S (2006) Phys Chem Chem Phys 8:4924–4931Google Scholar
  75. 75.
    Bouvier P, Delabouglise D, Denoyell A, Marcus B, Mermoux M, Petit J-P (2005) Electrochem Solid-State Lett 8:E57Google Scholar
  76. 76.
    Szunerits S, Shirahata N, Actis P, Nakanishir J, Boukherroub R (2007) Chem Commun 2793Google Scholar
  77. 77.
    Delamarche E, Sundarababu G, Biebuyck H, Michel B, Gerber C, Sigrist H, Wolf H, Rigsdorf H, Xanthopoulos N, Mathieu HJ (1997) Langmuir 12:1997–2006Google Scholar
  78. 78.
    Dorman G, Prestwich GD (1994) Biochem 33:5661Google Scholar
  79. 79.
    Mazur M, Krysinski P, Blanchard GJ (2005) Langmuir 21:8802Google Scholar
  80. 80.
    Kuo T-C, McCreery RL, Swain GM (1999) Electrochem Solid State Lett 2:288–290Google Scholar
  81. 81.
    Foord JS, Hao W, Hurst S (2007) Diam Relat Mater 16:877Google Scholar
  82. 82.
    Lud SQ, Steenackers M, Jordan R, Bruno P, Gruen DM, Feulner P, Garridao JA, Stutzmann M (2006) J Am Chem Soc 128:16884Google Scholar
  83. 83.
    Matrab T, Chehimi MM, Boudou JP, Benedic F, Wang J, Naguib NN, Carlisle JA (2006) Diam Relat Mater 15:639Google Scholar
  84. 84.
    Rezek B, Shin D, Nebel CE (2007) Langmuir 23:7626Google Scholar
  85. 85.
    Shin D, Tokuda N, Rezek B, Nebel CE (2006) Electrochem Commun 8:844Google Scholar
  86. 86.
    Uetsuka H, Shin D, Tokuda N, Saeki K, Nebel CE (2007) Langmuir 23:3466Google Scholar
  87. 87.
    Wang J, Carlisle JA (2006) Diam. Rel. Mater. 15:279–284Google Scholar
  88. 88.
    Yang W, Baker SE, Butler JE, Lee C-S, Russell JN, Shang L, Sun B, Hamers RJ (2005) Chem Mater 17:938–40Google Scholar
  89. 89.
    Zhou YL, Zhi JF (2006) Electrochem Commun 8:1811Google Scholar
  90. 90.
    Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Serveant JM (1997) J Am Chem Soc 119:201Google Scholar
  91. 91.
    Anariba F, DuVall SH, McCreery RL (2003) Anal Chem 75:3837–3844Google Scholar
  92. 92.
    Blankespoor R, Limoge B, Schnollhorn B, Syssa-Magalé J-L, Yazidi D (2005) Langmuir 21:3362Google Scholar
  93. 93.
    Brooksby PA, Downard AJ (2004) Langmuir 20:5038Google Scholar
  94. 94.
    Brooksby PA, Downard AJ (2005) J Phys Chem B 109:8791Google Scholar
  95. 95.
    Delamare M, Hitmi R, Pinson J, Savéant JM (1992) J Am Chem Soc 114:5883Google Scholar
  96. 96.
    DuVall SH, McCreery RL (2000) J Am Chem Soc 122:6759Google Scholar
  97. 97.
    Lee C-S, Baker SE, Marcus MS, Yang W, Eriksson MA, Hamers RJ (2004) Nano Lett 4:1713Google Scholar
  98. 98.
    Liu Y-C, McCreery RL (1995) J Am Chem Soc 117:11254Google Scholar
  99. 99.
    Liu Y-C, McCreery RL (1997) Anal Chem 69:2091Google Scholar
  100. 100.
    Pinson J, Podvorica F (2005) Chem Soc Rev 34:429Google Scholar
  101. 101.
    Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Savéant J-M (1997) J Am Chem Soc 119:201Google Scholar
  102. 102.
    Hamers RJ, Butler JE, Lassetera T, Nicholsa BM, Russell JN, Tsea K-Y, Yanga W (2005) Diam Relat Mater 14:661–668Google Scholar
  103. 103.
    Rouse AA, Bernhard JB, Sosa ED, Golden DE (1999) Appl Phys Lett 75:3417Google Scholar
  104. 104.
    Strother T, Knickerbocker T, Russell JN, Butler J, Smith LM, Hamers RJ (2002) Langmuir 18:968–971Google Scholar
  105. 105.
    Knickerbocker T, Strother T, Schwartz MP, Russell JN, Butler J, Smith LM, Hamers RJ (2003) Langmuir 19:1938–1942Google Scholar
  106. 106.
    Sun B, Baker SE, Butler JE, Kim H, Russell JN, Shang L, Tse K-Y, Yang W, Hamers RJ (2007) Diam Relat Mater 16:1608Google Scholar
  107. 107.
    Lasseter TL, Clare BH, Abbott NL, Hamers RJ (2004) J Am Chem Soc 126:10220–10221Google Scholar
  108. 108.
    Yang W, Butler JE, Russell JN, Hamers RJ (2007) Analyst 132:296Google Scholar
  109. 109.
    Christiaens P, Vermeeren v, Wenmackers S, Daenen M, Haenen K, Nesladek M, vande Ven M, Ameloot M, Michiels L, Wagner P (2006) Biosens Bioelectron 22:170Google Scholar
  110. 110.
    Nebel CE, Shin D, Takeuchi D, Yamamoto T, Watanabe H, Nakamura T (2006) Diam Relat Mater 15:1107Google Scholar
  111. 111.
    Rubio-Retama J, Hernando J, Lopez-Ruiz B, Hartl A, Stinmuller D, Stutzmann M, Lopez-Cabarcos E, Garrido JA (2006) Langmuir 22:5837Google Scholar
  112. 112.
    Zhong Y-L, Chong KF, May PW, Chen Z-K, Loh KP (2007) Langmuir 23:5824Google Scholar
  113. 113.
    Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker TL, Lasseter TL, Russell JN, Smith LM, Harmers RJ (2002) Nature Mat:253–257Google Scholar
  114. 114.
    Lu MC, Knickerbocker T, Cai W, Yang WS, Hamers RJ, Smith LM (2004) Biopolymers 73:606Google Scholar
  115. 115.
    Hartl A, Schmich E, Garrido JA, Hernanod J, Catharino SCR, Walter S, Feulber P, Kromka A, Steinmuller D, Stutzmann M (2004) Nature Mat:1–7Google Scholar
  116. 116.
    Nichols BM, Butler JE, Russell JN, Hamers RJ (2005) J Phys Chem B 109:20938Google Scholar
  117. 117.
    Nichols BM, Metz KM, Tse K-Y, Butler JE, Russell JN, Hamers RJ (2006) J Phys Chem B 110:16535Google Scholar
  118. 118.
    Strother T, Hamers RJ, Smith LM (2000) Nucleic Acids Res 28:3535Google Scholar
  119. 119.
    Yang W, Butler JE, Russell JN, Hamers RJ (2004) Langmuir 20:6778–6787Google Scholar
  120. 120.
    Yamada T, Chuang TJ, Seki H, Mitsuda Y (1991) Mol Phys 76:887Google Scholar
  121. 121.
    Freedman A, Stinespring CD (1990) AppL Phys Lett 57:1194Google Scholar
  122. 122.
    Sappok R, Boehm HP (1968) Carbon 6:283Google Scholar
  123. 123.
    Miller JB, Brown DW (1996) Langmuir 12:5809–5817Google Scholar
  124. 124.
    Liu Y, Zhenning G, Margrave JL, Khabashesku VN (2004) Chem Mat 16:3924–3930Google Scholar
  125. 125.
    Ando T, Yamamoto K, Matsuzawa M, Takamatsu Y, Kawasaki S, Okino F, Touhara H, Kamo M, Sato Y (1996) Diam Relat Mat 5:1021–1055Google Scholar
  126. 126.
    Ando T, M N-G, Rawles RE, Yamamoto K, Kamo M, Sato Y (1996) Diamond and Rel Mat 5:1136–1142Google Scholar
  127. 127.
    Gibson GE, Bayliss NS (1933) Phys Rev 44:188Google Scholar
  128. 128.
    Miller JB, Brown DW (1995) Diam Relat Mater 4:435–40Google Scholar
  129. 129.
    Miller JB (1999) Surf Sci 439:21Google Scholar
  130. 130.
    Nakamura T, Suzuki M, Ishihara M, Ohana T, Tanaka A, Koga Y (2004) Langmuir 20:5846–5849Google Scholar
  131. 131.
    Nakamura T, Tsugawa K, Ishihara M, Ohana T, Tanaka A, Koga Y (2004) Diamond and Rel Mat 13:1084–1087Google Scholar
  132. 132.
    Kim CS, Mowrey RC, Butler JE, Russell JN (1998) J Phys Chem B 102:9290–9296Google Scholar
  133. 133.
    Ikeda Y, Saito T, Kusakabe K, Morooka S, Maeda H, Taniguchi Y, Fujiwara Y (1998) Diam Relat Mater 7:830–834Google Scholar
  134. 134.
    Wenmackers S, Haenen K, Nesladek M, Wagner P, Michiels L, VandeVen M, Ameloot M (2003) Phys Stat Sol(a) 199:44–48Google Scholar
  135. 135.
    Ohtani B, Kim Y-H, Yano T, Hashimoto K, Fujishima A, Uosaki K (1998) Chem Lett 1:953–954Google Scholar
  136. 136.
    Ohta R, Saito N, Inoue Y, Sugimura H, Takai O (2004) J Vac Sci Technol A 22:2005–2009Google Scholar
  137. 137.
    Yan J-H, Song K-S, Zhang G-J, Degawa M, Sasaki Y, Ohomari I, Kawarada H (2006) Langmuir 22:11245Google Scholar
  138. 138.
    Szunerits S, Manesse M, Denault G, Marcus B, Jama C, Boukherroub R (2007) Electrochem Solid State Lett 10:G43–G6Google Scholar
  139. 139.
    Tsubota T, Urabe K, Egawa S, Takagi H, Kusakabe K, Morooka S, Meada H (2000) Diam Relat Mater 9:219Google Scholar
  140. 140.
    Tsubota T, Hirabayashi O, Ida S, Nagaoka S, Nagata M, Matsumoto Y (2002) Diam Relat Mater 11:1360–1365Google Scholar
  141. 141.
    Tsubota T, Hirabayashi O, Ida S, Nagaoka S, Nagata M, Matsumoto Y (2002) J Cer Soc Jpn 110:669–675Google Scholar
  142. 142.
    Tsubota T, Hirabayashi O, Ida S, Nagaoka S, Nagata M, Matsumoto Y (2002) Phys Chem Chem Phys 4:806–811Google Scholar
  143. 143.
    Tsubota T, Hirabayashi O, Ida S, Nagaoka S, Nagata M, Matsumoto Y (2002) Diam Relat Mater 11:1374–1378Google Scholar
  144. 144.
    Tsubota T, Ida S, Hirabayashi O, Nagaoka S, Nagata M, Matsumoto Y (2002) Phys. Chem. Chem. Phys 4:3881–3886Google Scholar
  145. 145.
    Tsubota T, Tanii S, Ida S, Nagaoka S, Matsumoto Y (2003) Phys Chem Chem Phys 5:1474–1480Google Scholar
  146. 146.
    Tsubota T, Tanii S, Ida S, Nagata M, Matsumoto Y (2004) Diam Relat Mater 13:1093–1097Google Scholar
  147. 147.
    Ida S, Tsubota T, Hirabayashi O, Nagata M, Matsumoto Y, Fujishima A (2003) Diam Relat Mater 12:601–605Google Scholar
  148. 148.
    Ida S, Tsubota T, Tanii S, Nagata M, Matsumoto Y (2003) Langmuir 19:9693–9698Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire d’Electrochimie et de Physicochimie des Matériaux et des Interfaces (LEPMI)CNRS-INPG-UJFSt. Martin d’Hères CedexFrance
  2. 2.Insstitut de Recherche Interdisciplinaire (IRI), FRE CNRS 2963Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS-8520, Cité ScientifiqueVilleneuve d’AscqFrance

Personalised recommendations