Journal of Solid State Electrochemistry

, Volume 12, Issue 7–8, pp 941–945 | Cite as

A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries

Original Paper

Abstract

CuO nanotube film and Cu2O film were anodically grown on Cu substrates through direct oxidation and electrochemical anodic reduction, respectively. The microstructure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The obtained CuO is monoclinic crystallization, and the diameters of tubes are about 100–300 nm, while the as-prepared Cu2O has a typical structure with a space group Pn3m and consists of compact faceted crystals. As anodes for Li-ion batteries, the electrochemical properties of the nanostructured CuO and Cu2O films were investigated by cyclic voltammogram and galvanostatic charge–discharge tests. An “apparent charge capacity” was introduced to describe the electrochemical performance. The initial apparent discharge capacity of the CuO and Cu2O film electrode reached to 911 and 570 mAh/g, respectively. Although they exhibited large irreversible capacities attributed to the formation of solid electrolyte interface (SEI) during the first cycle, the CuO nanotube film and Cu2O film had good cyclability and delivered the apparent capacity of 417 and 219 mAh/g after 30 cycles, respectively.

Keywords

CuO  Cu2 Anodical growth  Film  Anode 

References

  1. 1.
    Guy S, Philippe B, Michel B (2004) J Power Sources 127:65CrossRefGoogle Scholar
  2. 2.
    Lee YT, Yoon CS, Sun YK (2005) J Power Sources 139:230CrossRefGoogle Scholar
  3. 3.
    Yang Z, Wu H (2001) Solid State Ion 143:173CrossRefGoogle Scholar
  4. 4.
    Wang GX, Ahn JH, Yao J, Bewlay S, Liu HK (2004) Electrochem Commun 6:689CrossRefGoogle Scholar
  5. 5.
    Shi DQ, Tu JP, Yuan YF, Wu HM, Li Y, Zhao XB (2006) Electrochem Commun 8:1610CrossRefGoogle Scholar
  6. 6.
    Idota Y, Kubota T, Mastufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395CrossRefGoogle Scholar
  7. 7.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496CrossRefGoogle Scholar
  8. 8.
    Wang GX, Chen Y, Konstantinov K, Lindsay M, Liu HK, Dou SX (2002) J Power Sources 109:142CrossRefGoogle Scholar
  9. 9.
    Badway F, Plitz I, Grugeon S, Laruelle S, Dollé M, Gozdz AS, Tarascon JM (2002) Electrochem Solid State Lett 4:A115CrossRefGoogle Scholar
  10. 10.
    Larcher D, Masquelier M, Bonnin CD, Chabre Y, Masson V, Leriche JB, Tarascon JM (2003) J Electrochem Soc 150:A133CrossRefGoogle Scholar
  11. 11.
    Obrovac MN, Dunlap RA, Sanderson RJ, Dahn JR (2001) J Electrochem Soc 148:A576CrossRefGoogle Scholar
  12. 12.
    Zhang WX, Ding SX, Yang ZH, Liu AP, Qian YT, Tang SP, Yang SH (2006) J Cryst Growth 291:479CrossRefGoogle Scholar
  13. 13.
    Biestek T, Weber J (1976) Electrolytic and chemical conversion coating. Portcullis Press, LondonGoogle Scholar
  14. 14.
    Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Chem Mater 11:3512CrossRefGoogle Scholar
  15. 15.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, HoustonGoogle Scholar
  16. 16.
    Pourbaix M (1973) Lectures on electrochemical corrision. Plenum Press, New YorkGoogle Scholar
  17. 17.
    Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) J Electrochem Soc 148:A285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations