Journal of Solid State Electrochemistry

, Volume 11, Issue 8, pp 1101–1107 | Cite as

Mesoporous amorphous MnO2 as electrode material for supercapacitor

Original Paper

Abstract

A kind of novel mesoporous, electrochemical active material, amorphous MnO2 has been synthesized by an improved reduction reaction and using supramolecular as template. The synthesized sample was characterized physically by thermogravimetric analysis, X-ray diffraction, transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET) surface area measurement, respectively. Electrochemical characterization was performed using cyclic voltammetry and chronopotentiometry in 2 mol/l KOH aqueous solution electrolyte. The results of BET and TEM analysis indicated that supramolecular template plays an important role in the process of big specific surface area mesoporous material forming. After sintering at 200 °C, the sample still remained an amorphous structure, and its specific capacitance reached 298.7 F/g and presented a very stable capacitance after 500 cycles. In addition, the electrochemical process, such as ion transfer and electrical condition, was also investigated with electrochemical impedance spectroscopy.

Keywords

Electrochemical capacitors (ECs) MnO2 Mesoporous Amorphous 

References

  1. 1.
    Srinivasan V, Weinder JW (2000) J Electrochem Soc 147:880CrossRefGoogle Scholar
  2. 2.
    Lin C, Ritter JA, Popov BN (1998) J Electrochem Soc 145:4097CrossRefGoogle Scholar
  3. 3.
    Hu CC, Tsou TW (2003) J Power Sources 115:179CrossRefGoogle Scholar
  4. 4.
    Wu MQ, Snook GA, Chen GZ, Fray DJ (2004) Electrochem Commun 6:499CrossRefGoogle Scholar
  5. 5.
    Reddy RN, Reddy RG (2003) J Power Sources 124:330CrossRefGoogle Scholar
  6. 6.
    Long JW, Young AL, Rolison DR (2003) J Electrochem Soc 150:A1161CrossRefGoogle Scholar
  7. 7.
    Moore TE, Ellis M, Selwood PW (1950) J Am Chem Soc 72:856CrossRefGoogle Scholar
  8. 8.
    Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444CrossRefGoogle Scholar
  9. 9.
    WangYQ, Yin LX, Palchik O, Hacohen YR, Koitypin Y, Gedanken A (2001) Langmuir 17:4131Google Scholar
  10. 10.
    Lee B, Lu D, Kondo JN, Domen K (2002) J Am Chem Soc 124:11256CrossRefGoogle Scholar
  11. 11.
    Reddy RN, Reddy RG (2004) J Power Sources 132:315CrossRefGoogle Scholar
  12. 12.
    Jiang JH, Kucernak A (2002) Electrochim Acta 47:2381CrossRefGoogle Scholar
  13. 13.
    Takahashi T (1981) Electrochim Acta 26:1467CrossRefGoogle Scholar
  14. 14.
    Kim H, Popov BN (2003) J Electrochem Soc 150:D56CrossRefGoogle Scholar
  15. 15.
    Messaoudi B, Joiret S, Keddam M, Takenouti H (2001) Electrochim Acta 46:2487CrossRefGoogle Scholar
  16. 16.
    Zhang SS, Xu K, Jow TR (2004) Electrochim Acta 49:1057CrossRefGoogle Scholar
  17. 17.
    Bao SJ, Liang YY, Zhou WJ, He BL, Li HL (2006) J Power Sources 154:239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Mao-Wen Xu
    • 1
  • Dan-Dan Zhao
    • 1
  • Shu-Juan Bao
    • 1
  • Hu-Lin Li
    • 1
  1. 1.College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations