Journal of Solid State Electrochemistry

, Volume 11, Issue 7, pp 993–1006 | Cite as

Electrochemical, microscopic, and EQCM studies of cathodic electrodeposition of ZnO/FAD and anodic polymerization of FAD films modified electrodes and their electrocatalytic properties

Original Paper

Abstract

Two kinds of chemically modified electrodes were prepared. In the first type of electrodes, zinc oxide (ZnO) and flavin adenine dinucleotide (FAD) molecules were deposited onto the glassy carbon-, gold-, and SnO2-coated glass electrodes by using cyclic voltammetry from the bath solution containing aqueous 0.1 M zinc nitrate, 0.1 M sodium nitrate, and 1 × 10−4 M FAD. It was called as ZnO/FAD modified electrodes. The second type of modified electrode was prepared by the electropolymerization method. Electrochemical polymerization of FAD was carried out from the acidic solution containing 1 × 10−4 M FAD monomers onto electrode surfaces. This poly(FAD)-modified electrode yields a new redox couple in addition to the monomers redox couple. The influence of the concentrations, pH, and electrocatalytic properties of the ZnO/FAD- and poly(FAD)-modified electrodes are investigated by means of the in situ technique electrochemical quartz–crystal microgravimetry (EQCM) combined with cyclic voltammetry and the ex situ technique scanning electron microscopy. From these studies, it appears that the cathodic deposition of ZnO/FAD-modified electrodes gives only one redox couple, and the anodically polymerized FAD film-modified electrodes gives two reversible redox couples. The pH dependence of the redox responses were investigated and the kinetics of electron transfer was evaluated. In addition, the EQCM technique was employed to follow the deposition process of both kinds of modified electrodes in real time as well as the characteristics of the charge transfer associated with the surface-confined redox-active couples. The electrocatalytic activity of the poly(FAD)-modified electrode towards the reduction of hydrogen peroxide and the oxidation of dopamine and ascorbic acid was explored. The important electrocatalytic properties of poly(FAD)-modified electrode were observed for simultaneous separation of dopamine and ascorbic acid in neutral solution. This poly(FAD)-modified electrode has several advantages than the previously reported FAD-modified electrodes.

References

  1. 1.
    Wang Y, Zhu G, Wang E (1997) Anal Chim Acta 338:97CrossRefGoogle Scholar
  2. 2.
    Hiratsuka A, Kawasaki M, Hasebe K (1995) Bioelectrochemistry and Bioenergetics 36:157CrossRefGoogle Scholar
  3. 3.
    Kamal MM, Elzanowska H, Gaur M, Kim D, Birss VI (1991) J Electroanal Chem 318:349CrossRefGoogle Scholar
  4. 4.
    Shinohara H, Gratzel M, Vlachopoulos N, Aizawa M (1991) Bioelectrochemistry and Bioenergetics 26:307CrossRefGoogle Scholar
  5. 5.
    Ueyama S, Isoda S, Maeda M (1989) J Electroanal Chem 264:149CrossRefGoogle Scholar
  6. 6.
    Gorton L, Johansson GJ (1980) Electroanal Chem 113:151CrossRefGoogle Scholar
  7. 7.
    Ksenzhek OS, Petrova SA (1983) Bioelectrochemistry and Bioenergetics 11:105CrossRefGoogle Scholar
  8. 8.
    Nara Simhan K, Wingard LB (1985) J Appl Biochem Biotechnol 11:221Google Scholar
  9. 9.
    Wang ZL (2004) Mater Today 7:26CrossRefGoogle Scholar
  10. 10.
    Yoshida T, Komatsu D, Shimokawa N, Minoura H (2004) Thin Solid Films 66:451Google Scholar
  11. 11.
    Izaki M, Omi T (1996) Appl Phys Lett 68:2439CrossRefGoogle Scholar
  12. 12.
    Karuppuchamy S, Yoshida T, Sugiura T, Minoura H (2001) Thin Solid Films 397:63CrossRefGoogle Scholar
  13. 13.
    Yoshida T, Minoura H (2000) Adv Mater 12:1219CrossRefGoogle Scholar
  14. 14.
    Petrella A, Cozzoli PD, Curri ML, Striccoli M, Cosma P, Agostiano A (2004) Bioelectrochemistry 63:99CrossRefGoogle Scholar
  15. 15.
    Schlettwein AD, Oekermann T, Yoshida T, Tochimoto M, Minoura H (2000) J Electroanal Chem 481:42CrossRefGoogle Scholar
  16. 16.
    Keis AK, Magnusson E, Lindstrom H, Lindquist S-E, Hagfeldt A (2002) Sol Energy Mater Sol Cells 73:51CrossRefGoogle Scholar
  17. 17.
    Bahadur L, Srivastava P (2003) Sol Energy Mater Sol Cells 79:235CrossRefGoogle Scholar
  18. 18.
    Rensmo H, Keis K, Lindstrom H, Sodergren S, Solbrand A, Hagfeldt A, Lindquist S-E (1997) J Phys Chem B 101:2598CrossRefGoogle Scholar
  19. 19.
    Van de Walle GC (2000) Phys Rev Lett 85:1012CrossRefGoogle Scholar
  20. 20.
    Farr CH (1998) J ACAM 1:113Google Scholar
  21. 21.
    Lin KC, Chen SM (2006) Biosens Bioelectron 21:1737CrossRefGoogle Scholar
  22. 22.
    Karyakin AA, Ivanova YN, Revunova KV, Karyakina EE (2004) Anal Chem 76:2004CrossRefGoogle Scholar
  23. 23.
    Ivanova YN, Karyakin AA (2004) Electrochem Commun 6:120CrossRefGoogle Scholar
  24. 24.
    delos Santos-Älvarez N, delos Santos-Älvarez P, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2005) Anal Chem 77:4286CrossRefGoogle Scholar
  25. 25.
    Chen J, Cha CS (1999) J Electroanal Chem 463:93CrossRefGoogle Scholar
  26. 26.
    Stamford JA, Justice JB (1996) J Anal Chem 69:359Google Scholar
  27. 27.
    Pournaghi-Azar MH, Ojani R (1995) Talanta 42:1839CrossRefGoogle Scholar
  28. 28.
    O’Neill RD (1994) Analyst 119:767CrossRefGoogle Scholar
  29. 29.
    Salimi A, MamKhezri H, Hallaj R (2006) Talanta 70:823CrossRefGoogle Scholar
  30. 30.
    Capella P, Ghasmzadeh B, Mitchell K, Adams RN (1980) Electroanalysis 2:175CrossRefGoogle Scholar
  31. 31.
    Chi QJ, Dong SJ (1994) J Electroanal Chem 369:169CrossRefGoogle Scholar
  32. 32.
    Bauldreay JM, Archer MD (1983) Electrochim Acta 28:1515CrossRefGoogle Scholar
  33. 33.
    Ohsaka T, Tanaka K, Toduda K(1993) J Chem Soc Chem Commun 222Google Scholar
  34. 34.
    Sauerbrey GZ (1959) Z Physik 155:206CrossRefGoogle Scholar
  35. 35.
    Brukenstein S, Shay M (1985) Electrochim Acta 30:1295CrossRefGoogle Scholar
  36. 36.
    Yoshida T, Miyamoto K, Hibi N, Sugiura T, Minoura H, Schlettwein D, Oekermann T, Schneider G, Wöhrle D (1998) Chem Lett 27:599CrossRefGoogle Scholar
  37. 37.
    Yoshida T, Terada K, Oekermann T, Schlettwein D, Sugiura T, Minoura H (2000) Adv Mater 12:1214CrossRefGoogle Scholar
  38. 38.
    Yoshida T, Tochimoto M, Schlettwein D, Wöhrle D, Sugiura T, Minoura H (1999) Chem Mater 11:2657CrossRefGoogle Scholar
  39. 39.
    Yoshida T, Yoshimura J, Matsui M, Sugiura T, Minoura H (1999) Trans MRS-J 24:497Google Scholar
  40. 40.
    Schlettwein D, Oekermann T, Yoshida T, Tochimoto M, Minoura H (2000) J Electroanal Chem 481:42CrossRefGoogle Scholar
  41. 41.
    Kulesza PJ, Brajter K, Dabek-Zlotorzynska E (1987) Anal Chem 59:2776CrossRefGoogle Scholar
  42. 42.
    Mortimer RJ (1995) J Electroanal Chem 367:79CrossRefGoogle Scholar
  43. 43.
    Chidsey CED, Murray RW (1986) Science 231:25CrossRefGoogle Scholar
  44. 44.
    Bard AJ, Faulkner LR (1980) Electrochemical methods fundamentals and applications. Wiley, New York, p 472Google Scholar
  45. 45.
    Brown AP, Anson FC (1977) Anal Chem 49:1589CrossRefGoogle Scholar
  46. 46.
    Lin KC, Chen SM (2005) J Electroanal Chem 578:213CrossRefGoogle Scholar
  47. 47.
    Chen SM, Chzo WY (2006) J Electroanal Chem 587:226CrossRefGoogle Scholar
  48. 48.
    Lin KC, Chen SM (2006) J Electroanal Chem 589:15CrossRefGoogle Scholar
  49. 49.
    Doblhofer K, Vorotyntsev MM (1994) In: Lyons MEG (ed) Electroactive polymer electrochemistry, 375, Part 1. Plenum Press, LondonGoogle Scholar
  50. 50.
    Selvaraju T, Ramaraj R (2003) Electrochem Commun 5:667CrossRefGoogle Scholar
  51. 51.
    Kearney PC, Mizoue LS, Kumpf RA, Forman JE, McCurdy A, Dougherty DA (1993) J Am Chem Soc 115:9907CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Electroanalysis and Bioelectrochemistry Laboratory, Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiRepublic of China

Personalised recommendations