Journal of Solid State Electrochemistry

, Volume 10, Issue 10, pp 826–832 | Cite as

The pyrolytic graphite surface as an enzyme substrate: microscopic and spectroscopic studies

Original Paper

Abstract

We have conducted a series of experiments to explore the surface of the polished pyrolytic graphite ‘edge’ electrode as routinely prepared for use in protein film voltammetry. Our investigations have included nitrogen porosimetry and scanning electron microscopy. The nitrogen adsorption revealed a Brunauer–Emmett–Teller surface area ∼104 times greater than the geometric surface area of the electrode. The pore-size distribution calculated by the Horváth–Kawazoe method showed that 10–18% of the pore volume arises from pores having widths >10 nm and, thus, should be accessible to enzymes, although much of the exposed ‘wall’ surface may be inactive for enzyme binding or electron transfer: for example, it may be mainly basal plane. Scanning electron micrographs of the abraded pyrolytic graphite edge showed differing scales of surface damage caused by the abrasion and the presence of many cracks in the surface where thin platelets had been removed.

Keywords

Pyrolytic graphite Nitrogen adsorption Surface area Protein film voltammetry Protein electrochemistry Scanning electron microscopy 

References

  1. 1.
    Léger C, Elliott SJ, Hoke KR, Jeuken LJC, Jones AK, Armstrong FA (2003) Biochemistry 42:8653–8662CrossRefGoogle Scholar
  2. 2.
    Boehm HP (2001) In: Delhaès P (ed) World of carbon. Gordon and Breach Science, Amsterdam, pp 141–178Google Scholar
  3. 3.
    Schloegl R, Boehm HP (1983) Carbon 21:345–358CrossRefGoogle Scholar
  4. 4.
    Takahagi T, Ishitani A (1984) Carbon 22:43–46CrossRefGoogle Scholar
  5. 5.
    Barber J (1982) Annu Rev Plant Physiol 33:261–295CrossRefGoogle Scholar
  6. 6.
    Armstrong FA, Bond AM, Buchi FN, Hamnett A, Hill HAO, Lannon AM, Lettington OC, Zoski CG (1993) Analyst 118:973–978CrossRefGoogle Scholar
  7. 7.
    Jeuken LJC, Armstrong FA (2001) J Phys Chem B 105:5271–5282CrossRefGoogle Scholar
  8. 8.
    Armstrong FA, Camba R, Heering HA, Hirst J, Jeuken LJC, Jones AK, Léger C, McEvoy JP (2000) Faraday Discuss 116:191–203CrossRefGoogle Scholar
  9. 9.
    Hirst J, Armstrong FA (1998) Anal Chem 70:5062–5071CrossRefGoogle Scholar
  10. 10.
    Léger C, Jones AK, Albracht SPJ, Armstrong FA (2002) J Phys Chem B 106:13058–13063CrossRefGoogle Scholar
  11. 11.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  12. 12.
    Horváth G, Kawazoe K (1983) J Chem Eng Jpn 16:470–475CrossRefGoogle Scholar
  13. 13.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  14. 14.
    Rouquérol F, Rouquérol J, Sing KSW (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic, San DiegoGoogle Scholar
  15. 15.
    Bañares-Muñoz MA, Llorente JMM, Gonzalez LVF (1988) Carbon 26:681–685CrossRefGoogle Scholar
  16. 16.
    Davies TJ, Hyde ME, Compton RG (2005) Angew Chem Int Ed Engl 44:5121–5126CrossRefGoogle Scholar
  17. 17.
    Kondo A, Mihara J (1996) J Colloid Interface Sci 177:214–221CrossRefGoogle Scholar
  18. 18..
    Norde W (1986) Adv Colloid Interface Sci 25:267–340CrossRefGoogle Scholar
  19. 19.
    Rezwan K, Studart AR, Voros J, Gauckler LJ (2005) J Phys Chem B 109:14469–14474CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Christopher F. Blanford
    • 1
  • Fraser A. Armstrong
    • 1
  1. 1.Inorganic Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordUK

Personalised recommendations