Advertisement

Journal of Solid State Electrochemistry

, Volume 11, Issue 4, pp 554–557 | Cite as

Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes

  • Jun YanoEmail author
  • Toshiro Morita
  • Koji Shimano
  • Youji Nagami
  • Sumio Yamasaki
Short Communication

Abstract

Although the electrochemical reduction of carbon dioxide (CO2) with a copper electrode produces hydrocarbons, the activity toward the conversion of CO2 is lost for several 10 min by the deposition of poisoning species on the electrode. To solve the poisoning species problem, the electrochemical reduction of CO2 was carried out using a copper electrode with a pulse electrolysis mode with anodic as well as cathodic polarization. The anodic polarization intervals suppressed the deposition of poisoning species on the electrode, and the amount of two hydrocarbons, CH4 and C2H4, barely decreased even after an hour. By choosing appropriate anodic potential and time duration, the selectivity for the C2H4 formation was greatly enhanced. The enhancement was found to be due to the copper oxide formed on the copper electrode. The selectivity was further improved when the electrochemical reduction was made with the copper-oxide electrode. The highest efficiency of about 28% is obtained at −3.15 V.

Keywords

Electrochemical reduction Carbon dioxide Copper electrode Copper-oxide electrode Pulse electrolysis Ethylene 

Notes

Acknowledgements

Helpful discussion with Professor Akira Kitani of Hiroshima University is gratefully acknowledged.

References

  1. 1.
    Oman H (1998) Chemtech 116Google Scholar
  2. 2.
    Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M, Yamanaka Y, Yool A (2005) Nature 437:681CrossRefGoogle Scholar
  3. 3.
    Fischer F, Priziza O (1914) Ber Deut Chem Ges 47:256Google Scholar
  4. 4.
    Hori Y, Kikuchi K, Suzuki S (1985) Chem Lett 1695Google Scholar
  5. 5.
    Hori Y, Kikuchi K, Murata A, Suzuki S (1986) Chem Lett 897Google Scholar
  6. 6.
    Hori Y, Murata A, Takahashi R, Suzuki S (1988) J Chem Soc Chem Commun 17Google Scholar
  7. 7.
    Hori Y, Murata A, Yoshinami Y (1991) J Chem Soc Faraday Trans 87:125CrossRefGoogle Scholar
  8. 8.
    Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrochim Acta 39:1833CrossRefGoogle Scholar
  9. 9.
    Smith BD, Irish DE, Kedzierzawski P, Aaugustynski J (1997) J Electrochem Soc 144:4288CrossRefGoogle Scholar
  10. 10.
    Kyriacou G, Anagnostopoulos A (1992) J Electroanal Chem 328:233CrossRefGoogle Scholar
  11. 11.
    DeWuff DW, Jim T, Bard AJ (1989) J Electrochem Soc 136:1686CrossRefGoogle Scholar
  12. 12.
    Wasmus S, Cattaneo E, Vielstish W (1990) Electrochim Acta 35:771CrossRefGoogle Scholar
  13. 13.
    Friebe P, Bogdanoff P, Alonso-Vante N, Tributsch H (1997) J Catal 168:374CrossRefGoogle Scholar
  14. 14.
    Lee J, Tak Y (2001) Electrochim Acta 46:3015CrossRefGoogle Scholar
  15. 15.
    Hori Y, Konishi H, Futamura T, Murata A, Koga O, Sakurai H, Oguma K (2005) Electrochim Acta 50:5354CrossRefGoogle Scholar
  16. 16.
    Ogura K, Sugihara H, Yano J, Higasa M (1994) J Electrochem Soc 141:419CrossRefGoogle Scholar
  17. 17.
    Kita H, Kurisu T (1973) J Res Inst Catal Hokkaido Univ 21:200Google Scholar
  18. 18.
    Hori Y (1996) Electrochemistry 64:1048Google Scholar
  19. 19.
    Ogura K (2003) Electrochemistry 71:676Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jun Yano
    • 1
    Email author
  • Toshiro Morita
    • 2
  • Koji Shimano
    • 2
  • Youji Nagami
    • 2
  • Sumio Yamasaki
    • 2
  1. 1.Department of Engineering ScienceNiihama National College of TechnologyEhimeJapan
  2. 2.Department of Industrial Chemistry, Faculty of EngineeringKyushu Sangyo UniversityFukuokaJapan

Personalised recommendations