Advertisement

Journal of Solid State Electrochemistry

, Volume 10, Issue 10, pp 817–825 | Cite as

Microfluidic voltammetry: simulation of the chronoamperometric response of microband electrodes sited within microreactors

  • S. M. Matthews
  • G. Q. Du
  • A. C. FisherEmail author
Original Paper

Abstract

A computationally efficient fully implicit approach to the simulation of the chronoamperometric response of microband electrodes sited within microscale rectangular ducts is reported. The current response is reported for stagnant solution and where electrolyte is pumped through the cell under microfluidic control. The generality of the method is illustrated with reference to the simple case of a reversible one-electron-transfer reaction. The influence of flow rate and the effects of axial, lateral and normal diffusion upon the electrolysis current are examined and the results compared to approximate analytical behaviour where appropriate.

Keywords

Volume Flow Rate Relevant Boundary Condition Hydrodynamic Boundary Layer Mass Transport Equation Aspect Ratio Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fleischman M, Pons S (1987) Ultramicroelectrodes. Datatech, Morganton, NCGoogle Scholar
  2. 2.
    Wang J (1990) Microelectrodes. VCH, New YorkGoogle Scholar
  3. 3.
    Bond AM (1994) Analyst 119:1CrossRefGoogle Scholar
  4. 4.
    Cooper JB, Bond AM, Oldham KB (1992) J Electroanal Chem 331:877CrossRefGoogle Scholar
  5. 5.
    Compton RG, Fisher AC, Wellington RG, Dobson PJ, Leigh PA (1993) J Phys Chem 97:10410CrossRefGoogle Scholar
  6. 6.
    Compton RG, Dryfe RAW, Alden JA, Rees NV, Dobson PJ, Leigh PA (1994) J Phys Chem 98:1270CrossRefGoogle Scholar
  7. 7.
    MacPherson JV, Macar S, Unwin PR (1994) Anal Chem 66:2175CrossRefGoogle Scholar
  8. 8.
    Booth J, Compton RG, Cooper JA, Dryfe RAW, Fisher AC, Davies C, Walters M (1995) J Phys Chem 99:10942CrossRefGoogle Scholar
  9. 9.
    Sullivan SP, Johns ML, Matthews SM, Fisher AC (2005) Electrochem Commun 7:1323CrossRefGoogle Scholar
  10. 10.
    Henley IE, Fisher AC (2003) J Phys Chem B 107:6579CrossRefGoogle Scholar
  11. 11.
    Yunus K, Henley IE, Fisher AC (2003) J Phys Chem B 107:3878CrossRefGoogle Scholar
  12. 12.
    Yunus K, Fisher AC (2003) Electroanalysis 21:15Google Scholar
  13. 13.
    Henley IE, Fisher AC (2003) Electroanalysis 21:55Google Scholar
  14. 14.
    Spiga M, Morini GL (1994) Int Commun Heat Mass Transf 21:469CrossRefGoogle Scholar
  15. 15.
    Fisher AC, Compton RG (1991) J Phys Chem 95:7539Google Scholar
  16. 16.
    Aoki K (1993) Electroanalysis 5:627CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations