Advertisement

Journal of Solid State Electrochemistry

, Volume 10, Issue 10, pp 792–807 | Cite as

Formation of polyaniline/Pt nanoparticle composite films and their electrocatalytic properties

  • Anthony P. O’Mullane
  • Sara E. Dale
  • Thomas M. Day
  • Neil R. Wilson
  • Julie V. Macpherson
  • Patrick R. UnwinEmail author
Original paper

Abstract

Polyaniline (PANI) thin films modified with platinum nanoparticles have been prepared by several methods, characterised and assessed in terms of electrocatalytic properties. These composite materials have been prepared by the in situ reduction of a platinum salt (K2PtCl4) by PANI, in a variety of solvents, resulting in the formation of platinum nanoparticles and clusters of different sizes. The further deposition of platinum clusters at spin cast thin films of PANI/Pt composites from a neutral aqueous solution of K2PtCl4 has also been demonstrated. Thin-film electrodes prepared from these materials have been investigated for their electrocatalytic activity by studying hydrazine oxidation and dichromate reduction. The properties of the composite materials have been determined using UV–visible spectroscopy, atomic force microscopy and transmission electron microscopy. The nature of the material formed is strongly dependent on the solvent used to dissolve PANI, the method of preparation of the PANI/Pt solution and the composition of the spin cast thin film before subsequent deposition of platinum from the aqueous solution of K2PtCl4.

Keywords

Nanoparticle Conducting polymers Atomic force microscopy Electrocatalysis 

Notes

Acknowledgements

We thank the EU Human Potential Programme SUSANA (Supramolecular Self-Assembly of Interfacial Nanostructures), contract HPRN-CT-2002-00185 for the funding. We are especially grateful to Steve York (Department of Physics, University of Warwick) for the TEM images.

References

  1. 1.
    Gangopadhyay R, De A (2000) Chem Mater 12:608CrossRefGoogle Scholar
  2. 2.
    Schnitzler DC, Meruvia MS, Hümmelgen IA, Zarbin AJ (2003) Chem Mater 15:4658CrossRefGoogle Scholar
  3. 3.
    Christine M-C, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  4. 4.
    Qi Z, Pickup PG (1998) Chem Commun 21:2299CrossRefGoogle Scholar
  5. 5.
    Napporn WT, Laborde H, Léger J-M, Lamy C (1996) J Electroanal Chem 404:153CrossRefGoogle Scholar
  6. 6.
    Croissant MJ, Napporn T, Léger J-M, Lamy C (1998) Electrochim Acta 43:2447CrossRefGoogle Scholar
  7. 7.
    Sin BC, Wolf MO (2005) Chem Comm 3375Google Scholar
  8. 8.
    Grzeszczuk M, Poks P (2000) Electrochim Acta 45:4171CrossRefGoogle Scholar
  9. 9.
    Castro Luna AM (2000) J Appl Electrochem 30:1137CrossRefGoogle Scholar
  10. 10.
    Kitani A, Akashi T, Sugimoto K, Ito S (2001) Synth Met 121:1301CrossRefGoogle Scholar
  11. 11.
    Kessler T, Castro Luna AM (2002) J Appl Electrochem 32:825CrossRefGoogle Scholar
  12. 12.
    Niu L, Li Q, Wei F, Chen X, Wang H (2003) J Electroanal Chem 544:121CrossRefGoogle Scholar
  13. 13.
    Niu L, Li Q, Wei F, Chen X, Wang H (2003) Synth Met 139:271CrossRefGoogle Scholar
  14. 14.
    Venancio EC, Napporn WT, Motheo AJ (2002) Electrochim Acta 47:1495CrossRefGoogle Scholar
  15. 15.
    Kim J-H, Cho J-H, Cha GS, Lee C-W, Kim H-B, Paek S-H (2000) Biosens Bioelectron 14:907CrossRefGoogle Scholar
  16. 16.
    Matsui J, Akamatsu K, Nishiguchi S, Miyoshi D, Nawafune DH, Tamaki HK, Sugimoto N (2004) Anal Chem 76:1310CrossRefGoogle Scholar
  17. 17.
    Hu C-C, Chen E, Lin J-Y (2002) Electrochim Acta 47:2741CrossRefGoogle Scholar
  18. 18.
    Malik MA, Galkowski MT, Bala H, Grzybowska B, Kulesza J (1999) Electrochim Acta 44:2157CrossRefGoogle Scholar
  19. 19.
    Breimer MA, Yevgeny G, Sheldon S, Sadik OA (2001) Nano Lett 1:305CrossRefGoogle Scholar
  20. 20.
    Wang J, Neoh KG, Kang ET (2001) J Colloid Interface Sci 239:78CrossRefGoogle Scholar
  21. 21.
    Sarma TK, Chowdhury D, Paul A, Chattopadhyay A (2002) Chem Commun 10:1048CrossRefGoogle Scholar
  22. 22.
    Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y (2001) Chem Commun 7:613CrossRefGoogle Scholar
  23. 23.
    Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y (2002) Langmuir 18:5287CrossRefGoogle Scholar
  24. 24.
    Zhai L, McCullogh RD (2004) J Mater Chem 14:141CrossRefGoogle Scholar
  25. 25.
    Corbierre MK, Cameron NS, Sutton M, Mochrie SG, Lurio LB, Rühm A, Lennox RB (2001) J Am Chem Soc 123:10411CrossRefGoogle Scholar
  26. 26.
    MacDiarmid AG, Epstein AJ (1995) Synth Met 69:85CrossRefGoogle Scholar
  27. 27.
    Chartier P, Mattes B, Reiss H (1992) J Phys Chem 96:3556CrossRefGoogle Scholar
  28. 28.
    Neoh KG, Young TT, Looi NT, Kang ET (1997) Chem Mater 9:2906CrossRefGoogle Scholar
  29. 29.
    Hatchett DW, Josowicz M, Janata J (1999) Chem Mater 11:2989CrossRefGoogle Scholar
  30. 30.
    Smith JA, Josowicz M, Janata J (2003) J Electrochem Soc 150:E384CrossRefGoogle Scholar
  31. 31.
    Drelinkiewicz A, Hasik M, Choczyński M (1998) Mater Res Bull 33:739CrossRefGoogle Scholar
  32. 32.
    Park J-E, Park S-G, Koukitu A, Hatozaki O, Oyama N (2004) Synth Met 141:265CrossRefGoogle Scholar
  33. 33.
    Tsakova V, Milchev A (1991) Electrochim Acta 36:1151CrossRefGoogle Scholar
  34. 34.
    de Barros RA, de Azevedo WM, de Aguiar FM (2003) Mater Charact 50:131CrossRefGoogle Scholar
  35. 35.
    Ivanov S, Tsakova V (2002) J Appl Electrochem 32:701CrossRefGoogle Scholar
  36. 36.
    Ivanov S, Tsakova V (2002) J Appl Electrochem 32:709CrossRefGoogle Scholar
  37. 37.
    Hopkins AR, Rasmussen PG, Basheer RA (1996) Macromolecules 29:7838CrossRefGoogle Scholar
  38. 38.
    Mikhaylova AA, Molodkina EB, Khazova OA, Bagotzky VS (2001) J Electroanal Chem 509:119CrossRefGoogle Scholar
  39. 39.
    Malinauskas A (1999) Synth Met 107:75CrossRefGoogle Scholar
  40. 40.
    Gholamian M, Contractor AQ (1990) J Electroanal Chem 289:69CrossRefGoogle Scholar
  41. 41.
    Napporn WT, Léger J-M, Lamy C (1996) J Electroanal Chem 408:141CrossRefGoogle Scholar
  42. 42.
    Maksimov YM, Gladysheva TD, Podlovchenko BI (2001) Russ J Electrochem 37:653Google Scholar
  43. 43.
    Grzeszczuk M (1994) Electrochim Acta 39:1809CrossRefGoogle Scholar
  44. 44.
    Grzeszczuk M, Poks P (2000) Electrochim Acta 45:4171CrossRefGoogle Scholar
  45. 45.
    Lai EK, Beattie PD, Holdcroft S (1997) Synth Met 84:87CrossRefGoogle Scholar
  46. 46.
    Lai EK, Beattie PD, Orfino FP, Simon E, Holdcroft S (1999) Electrochim Acta 44:2559CrossRefGoogle Scholar
  47. 47.
    Coutanceau C, Croissant MJ, Napporn T, Lamy C (2000) Electrochim Acta 46:579CrossRefGoogle Scholar
  48. 48.
    Cao Y, Qiu J, Smith P (1995) Synth Met 69:187CrossRefGoogle Scholar
  49. 49.
    Mourata A, Viana AS, Correia JP, Siegenthaler H, Abrantes LM (2004) Electrochim Acta 49:2249CrossRefGoogle Scholar
  50. 50.
    Yamada K, Yasuda K, Fujiwara N, Siroma Z, Tanaka H, Miyazaki Y, Kobayashi T (2003) Electrochem Commun 5:892CrossRefGoogle Scholar
  51. 51.
    Yamada K, Asazawa K, Yasuda K, Ioroi T, Tanaka H, Miyazaki Y, Kobayashi T (2003) J Power Sources 115:236CrossRefGoogle Scholar
  52. 52.
    Casella IG, Guascito MR, Salvi AM, Desimoni E (1997) Anal Chim Acta 354:333CrossRefGoogle Scholar
  53. 53.
    Golabi SM, Zare HR (1999) J Electroanal Chem 465:168CrossRefGoogle Scholar
  54. 54.
    Burke LD, Nugent PF (1997) Electrochim Acta 42:399CrossRefGoogle Scholar
  55. 55.
    Horányi G (2000) J Solid State Electrochem 4:153CrossRefGoogle Scholar
  56. 56.
    O’Mullane AP, Dale SE, Macpherson JV, Unwin PR (2004) Chem Comm 1606Google Scholar
  57. 57.
    Huang WS, MacDiarmid AG (1993) Polymer 34:1833CrossRefGoogle Scholar
  58. 58.
    Moon D-K, Ezuka M, Maruyama T, Osakada K, Yamamoto T (1993) Macromolecules 26:364CrossRefGoogle Scholar
  59. 59.
    Takanori T, Umemura J (1997) Appl Spectrosc 51:944CrossRefGoogle Scholar
  60. 60.
    Chinn D, Janata J (1994) Thin Solid Films 252:145CrossRefGoogle Scholar
  61. 61.
    Hasik M, Paluszkiewicz C, Wenda E (2002) Vibr Spectrosc 29:191CrossRefGoogle Scholar
  62. 62.
    Fukuoka A, Sakamoto Y, Guan S, Inagaki S, Sugimoto N, Fukushima Y, Hirahara K, Iijima S, Ichikawa M (2001) J Am Chem Soc 123:3373CrossRefGoogle Scholar
  63. 63.
    Fukuoka A, Higashimoto N, Sakamoto Y, Inagaki S, Fukushima Y, Ichikawa M (2001) Microporous Mesoporous Mater 48:171CrossRefGoogle Scholar
  64. 64.
    Zheng W, Angelopoulos M, Epstein AJ, MacDiarmid AG (1997) Macromolecules 30:7634CrossRefGoogle Scholar
  65. 65.
    Angelopoulos M, Dipietro R, Zheng WG, MacDiarmid AG (1997) Synth Met 84:35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Anthony P. O’Mullane
    • 1
  • Sara E. Dale
    • 2
  • Thomas M. Day
    • 2
  • Neil R. Wilson
    • 2
  • Julie V. Macpherson
    • 2
  • Patrick R. Unwin
    • 2
    Email author
  1. 1.School of ChemistryMonash UniversityVictoriaAustralia
  2. 2.Department of ChemistryUniversity of WarwickCoventryUK

Personalised recommendations