Journal of Solid State Electrochemistry

, Volume 10, Issue 8, pp 604–616

Methane oxidation in a mixed ionic–electronic conducting ceramic hollow fibre reactor module

Original Paper

Abstract

A reactor module, consisting of six gas-tight hollow fibre membranes made of the mixed ionic–electronic conducting perovskite, \( {\text{La}}_{{0.6}} {\text{Sr}}_{{0.4}} {\text{Co}}_{{0.2}} {\text{Fe}}_{{0.8}} {\text{O}}_{{3 - \delta }} \), has been tested for oxygen permeation and stability during methane oxidation in the temperature range of 540 to 960°C. Rigorous leak testing was undertaken and it was demonstrated that the module could be adequately sealed. Oxygen permeation fluxes were similar to those reported by previous workers. At higher temperatures of operation, it appeared that mass transfer limited the oxygen flux, as this flux was dependent upon the flow rates on either side of the membrane. In this way, reactant flow rates could be used to manipulate the transmembrane oxygen flux. It was found that the product distribution on the methane side was dependent upon this flux, with carbon monoxide and hydrogen production being favoured at low fluxes and carbon dioxide and water production being favoured at higher fluxes. Furthermore, at low oxygen flow rates, periodic increases in the transmembrane oxygen flux were observed. The cause of this behaviour is unclear but may be as a result of phase/stoichiometric changes associated with the membrane material.

Keywords

Perovskite \( \begin{aligned} & {\text{La}}_{{0.6}} {\text{Sr}}_{{0.4}} {\text{Co}}_{{0.2}} {\text{Fe}}_{{0.8}} {\text{O}}_{{3 - \delta }} \\ & {\ifmmode\expandafter\hat\else\expandafter\^\fi{a}} \\ \end{aligned} \) Mixed conductor Hollow fibre Oxygen permeation Methane oxidation Leak test 

References

  1. 1.
    Arakawa H (2001) Chem Rev 101:953CrossRefPubMedGoogle Scholar
  2. 2.
    Yantovski E, Gorski J, Smyth B, ten Elshof J (2004) Energy 29:2077CrossRefGoogle Scholar
  3. 3.
    Peña MA, Fierro JLG (2001) Chem Rev 101:1981CrossRefPubMedGoogle Scholar
  4. 4.
    Smyth DM (2000) Solid State Ion 129:5CrossRefGoogle Scholar
  5. 5.
    Tao S, Irvine TS (2002) Solid State Ion 154:659CrossRefGoogle Scholar
  6. 6.
    Catalysis Today (1990) 8: all references thereinGoogle Scholar
  7. 7.
    Mineshige A, Izutsu J, Nakamura M, Nigaki K, Abe J, Kobune M, Fujii S, Yazawa (2005) Solid State Ion 176:1145CrossRefGoogle Scholar
  8. 8.
    Thursfield A, Metcalfe IS (2004) J Mater Chem 14:2475CrossRefGoogle Scholar
  9. 9.
    Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mater Res Bull 23:51CrossRefGoogle Scholar
  10. 10.
    Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) J Electrochem Soc 143:2722CrossRefGoogle Scholar
  11. 11.
    Xu JS, Thomson WJ (1999) Chem Eng Sci 54:3839CrossRefGoogle Scholar
  12. 12.
    Lane JA, Benson SJ, Waller D, Kilner JA (1999) Solid State Ion 121:201CrossRefGoogle Scholar
  13. 13.
    Li S, Jin W, Huang P, Xu N, Shi J, Lin YS (2000) J Membr Sci 166:51CrossRefGoogle Scholar
  14. 14.
    Tan X, Liu Y, Li K (2005) AIChE J 51:1991CrossRefGoogle Scholar
  15. 15.
    Tan X, Lui Y, Li K (2005) Ind Eng Chem Res 44:61CrossRefGoogle Scholar
  16. 16.
    de Jong J, Benes NE, Koops GH, Wessling M (2004) J Membr Sci 239:265CrossRefGoogle Scholar
  17. 17.
    Nijdam W, de Jong J, van Rujn CJM, Visser T, Versteeg L, Kapantaidakis G, Koops GH, Wessling M (2005) J Membr Sci 256:209Google Scholar
  18. 18.
    Li S, Qi H, Xu N, Shi J (1999) Ind Eng Chem Res 38:5028CrossRefGoogle Scholar
  19. 19.
    Jin W, Li S, Huang P, Xu N, Shi J (2001) J Membr Sci 185:237CrossRefGoogle Scholar
  20. 20.
    Diethelm S, Van herle J (2004) J Eur Ceram Soc 24:1319CrossRefGoogle Scholar
  21. 21.
    Liu S, Gavalas GR (2004) J Membr Sci 246:103CrossRefGoogle Scholar
  22. 22.
    Schiestel T, Kilgus M, Peter S, Caspary KJ, Wang H, Caro J (2005) J Membr Sci 258:1CrossRefGoogle Scholar
  23. 23.
    Xu SJ, Thomson WJ (1998) Ind Eng Chem Res 37:1290CrossRefGoogle Scholar
  24. 24.
    Xu N, Li S, Jin W, Shi J, Lin YS (1999) AIChE J 45:2519CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Chemical Engineering and Advanced MaterialsUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations