Journal of Solid State Electrochemistry

, Volume 9, Issue 6, pp 469–474 | Cite as

Enzymatic formation of ions and their detection at a three-phase electrode

  • Rubin Gulaboski
  • Carlos M. Pereira
  • M. Natalia D. S. Cordeiro
  • Ivan Bogeski
  • Fernando Silva
Short Communication

Abstract

An electrochemical method for the detection of enzymatically created anions is described that uses a thin-film electrode with decamethylferrocene as an electroactive redox probe. The enzymatic oxidation of glucose with enzyme glucose oxidase produces gluconic acid as a final product. The oxidation of decamethylferrocene dissolved in the thin-nitrobenzene film, that is spread on the working graphite electrode and submerged in the aqueous solution containing glucose and glucose oxidase, is followed by the up-take of gluconate anions from the aqueous phase to nitrobenzene. The peak currents of the square-wave voltammetric responses of that system are a linear function of the glucose concentration in the milimolar range from 0.1 mmol/L to 0.7 mmol/L (R2=0.994).

Keywords

Glucose Enzymatic reactions Biosensor Thin-film electrode Ion transfer Decamethylferrocene 

Notes

Acknowledgments

Rubin Gulaboski thanks Fundação para a Ciência e a Tecnologia (FCT) of Portugal for providing of a post. doc. fellowship (SFRH/BPD/14894/2004). The authors would like to thank FCT for financial support (CIQ L4 and FEDER for the project POCTI/QUI/42472/2001).

References

  1. 1.
    Walsh C (1978) Enzymatic reaction mechanisms. W.H. Freeman and Company, New YorkGoogle Scholar
  2. 2.
    Guilbault GG (1970) Enzymatic methods of analysis, (International series of monographs in analytical chemistry), 1st edn. Pergamon Press, LondonGoogle Scholar
  3. 3.
    Payne GF (1995) Coupling enzymatic reaction with adsorption. American Institute of Chemical EngineersGoogle Scholar
  4. 4.
    Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. 5.
    Scholz F, Gulaboski R (2005) ChemPhysChem 6:16CrossRefPubMedGoogle Scholar
  6. 6.
    Scholz F, Komorsky-Lovrić Š, Lovrić M (2000) Electrochem Commun 2:112CrossRefGoogle Scholar
  7. 7.
    Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New YorkGoogle Scholar
  8. 8.
    Jaffari SA, Turner APF (1995) Physiol Meas 16:1CrossRefPubMedGoogle Scholar
  9. 9.
    Rechnits GA (1988) Chem Eng News 5:24Google Scholar
  10. 10.
    Updike SJ, Hicks GP (1967) Nature 214:986PubMedGoogle Scholar
  11. 11.
    Clark LC, Lyons C (1962) Ann NY Acad Sci 102:29PubMedGoogle Scholar
  12. 12.
    Guilbault GG, Lubrano GJ (1972) Anal Chim Acta 64:439CrossRefGoogle Scholar
  13. 13.
    Vreeke MS, Yong KT, Heller A (1995) Anal Chem 67:4247CrossRefGoogle Scholar
  14. 14.
    Horrocks BR, Schmidtke D, Heller A (1993) Anal Chem 65:3605CrossRefPubMedGoogle Scholar
  15. 15.
    Aizawa M (1987) In: Ngo TT (ed) Electrochem sensors immunolog anal. Plenum, New York, pp 269–278Google Scholar
  16. 16.
    Gregg BA, Heller A (1991) J Phys Chem 95:5970CrossRefGoogle Scholar
  17. 17.
    Gleria KD, Hill HAO, McNeil CJ (1986) Anal Chem 58:1203CrossRefPubMedGoogle Scholar
  18. 18.
    Pereira CM, Oliveira JM, Silva RM, Silva F (2004) Anal Chem 76:5547CrossRefPubMedGoogle Scholar
  19. 19.
    Gulaboski R, Scholz F (2003) J Phys Chem B 107:5650CrossRefGoogle Scholar
  20. 20.
    Mirčeski V, Gulaboski R, Scholz F (2004) J Electroanal Chem 566:351CrossRefGoogle Scholar
  21. 21.
    Gulaboski R, Galland A, Bouchard G, Caban K, Kretschmer A, Carrupt PA, Stojek Z, Girault HH, Scholz F (2004) J Phys Chem B 108:4565CrossRefGoogle Scholar
  22. 22.
    Quentel F, Mirčeski V, L’Her M (2005) J Phys Chem B 109:1262CrossRefGoogle Scholar
  23. 23.
    Banks CE, Davies TJ, Evans RG, Hignett G, Wain AJ, Lawrence NS, Wadhawan JD, Marken F, Compton RG (2003) Phys Chem Chem Phys 5:4053CrossRefGoogle Scholar
  24. 24.
    Quentel F, Mirčeski V, L’ Her M (2005) Anal Chem 77:1949CrossRefGoogle Scholar
  25. 25.
    Shi C, Anson F (1998) Anal Chem 70:3114CrossRefGoogle Scholar
  26. 26.
    Shi C, Anson F (1998) J Phys Chem B 102:9850CrossRefGoogle Scholar
  27. 27.
    Shi C, Anson FC (1999) J Phys Chem B 103:6283CrossRefGoogle Scholar
  28. 28.
    Chung TD, Anson FC (2001) Anal Chem 73:337CrossRefPubMedGoogle Scholar
  29. 29.
    Shi C, Anson F (2001) J Phys Chem B 105:1047CrossRefGoogle Scholar
  30. 30.
    Komorsky-Lovrić Š, Lovrić M, Scholz F (2001) Collect Czech Chemm Commun 66:434CrossRefGoogle Scholar
  31. 31.
    Stewart AA, Campbell JA, Girault HH (1990) Ber Bunsenges Phys Chem 94:83Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Rubin Gulaboski
    • 1
  • Carlos M. Pereira
    • 1
  • M. Natalia D. S. Cordeiro
    • 1
  • Ivan Bogeski
    • 2
  • Fernando Silva
    • 1
  1. 1.Departamento de Quimica, Faculdade do CiênciasUniversidade do PortoPortoPortugal
  2. 2.Institute of PhysiologyUniversity of SaarlandHomburgGermany

Personalised recommendations