Advertisement

Journal of Solid State Electrochemistry

, Volume 10, Issue 6, pp 339–347 | Cite as

(La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3) x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells

  • Y. J. LengEmail author
  • S. H. Chan
  • K. A. Khor
  • S. P. Jiang
Original Paper

Abstract

Development of high performance cathodes with low polarization resistance is critical to the success of solid oxide fuel cell (SOFC) development and commercialization. In this paper, (La0.8Sr0.2)0.9MnO3 (LSM)–Gd0.2Ce0.8O1.9(GDC) composite powder (LSM ~70 wt%, GDC ~30 wt%) was prepared through modification of LSM powder by Gd0.2Ce0.8(NO3) x solution impregnation, followed by calcination. The electrode polarization resistance of the LSM–GDC cathode prepared from the composite powder was ~0.60 Ω cm2 at 750 °C, which is ~13 times lower than that of pure LSM cathode (~8.19 Ω cm2 at 750 °C) on YSZ electrolyte substrates. The electrode polarization resistance of the LSM–GDC composite cathode at 700 °C under 500 mA/cm2 was ~0.42 Ω cm2, which is close to that of pure LSM cathode at 850 °C. Gd0.2Ce0.8(NO3) x solution impregnation modification not only inhibits the growth of LSM grains during sintering but also increases the triple-phase-boundary (TPB) area through introducing ionic conducting phase (Gd,Ce)O2-δ, leading to the significant reduction of electrode polarization resistance of LSM cathode.

Keywords

Intermediate-temperature SOFC Composite cathode Impregnation Polarization resistance 

Notes

Acknowledgements

Dr. Leng thanks the Agency for Science, Technology & Research (A*Star), Singapore for the research fellowship (Contract P0120164).

References

  1. 1.
    Souza SD, Visco SJ, Jonghe LCD (1997) Solid State Ionics 98:57CrossRefGoogle Scholar
  2. 2.
    Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC (1999) J Electrochem Soc 146:69CrossRefGoogle Scholar
  3. 3.
    Leng YJ, Chan SH, Khor KA, Jiang SP, Cheang P (2003) J Power Sources 117:26CrossRefGoogle Scholar
  4. 4.
    Maric R, Ohara S, Fukui T, Yoshida H, Nishimura M, Inagaki T, Miura K (1999) J Electrochem Soc 146:2006CrossRefGoogle Scholar
  5. 5.
    Ishihara T, Shibayama T, Honda M, Nishiguchi H, Takita Y (2000) J Electrochem Soc 147:1332CrossRefGoogle Scholar
  6. 6.
    Wang K, Wan JH, Goodenough JB (2001) J Electrochem Soc 148:A788CrossRefGoogle Scholar
  7. 7.
    Yan JW, Lu LG, Jiang Y, Dong YL, Yu CL, Li WZ (2002) J Electrochem Soc 149:A1132CrossRefGoogle Scholar
  8. 8.
    Doshi R, Richards VL, Carter JD, Wang X, Krumpelt M (1999) J Electrochem Soc 146:1273CrossRefGoogle Scholar
  9. 9.
    Xia C, Chen F, Liu M (2001) Electrochem Solid State Lett 4:A52CrossRefGoogle Scholar
  10. 10.
    Xia C, Liu M (2001) Solid State Ionics 144:249CrossRefGoogle Scholar
  11. 11.
    Leng YJ, Chan SH, Jiang SP, Khor KA (2004) Solid State Ionics 170:9CrossRefGoogle Scholar
  12. 12.
    Minh NQ (1993) J Am Ceram Soc 76:563CrossRefGoogle Scholar
  13. 13.
    Steele BCH, Bae JM (1998) Solid State Ionics 106:255CrossRefGoogle Scholar
  14. 14.
    Dusastre V, Kilner JA (1999) Solid State Ionics 126:163CrossRefGoogle Scholar
  15. 15.
    Kim JD, Kim GD, Moon JW, Park YI, Lee WH, Kobayashi K, Nagai M, Kim CE (2001) Solid State Ionics 143:379CrossRefGoogle Scholar
  16. 16.
    Jørgensen MJ, Primdahl S, Bagger C, Mogensen M (2001) Solid State Ionics 139:1CrossRefGoogle Scholar
  17. 17.
    Murray EP, Tsai T, Barnett SA (1998) Solid State Ionics 110:235CrossRefGoogle Scholar
  18. 18.
    Murray EP, Barnett SA (2001) Solid State Ionics 143:265CrossRefGoogle Scholar
  19. 19.
    Xia C, Zhang Y, Liu M (2003) Electrochem Solid State Lett 6:A290CrossRefGoogle Scholar
  20. 20.
    Jiang SP, Leng YJ, Chan SH, Khor KA (2003) Electrochem Solid State Lett 6:A67CrossRefGoogle Scholar
  21. 21.
    Chen XJ, Chan SH, Khor KA (2004) Electrochim Acta 49:1851CrossRefGoogle Scholar
  22. 22.
    Jiang SP, Love JG (2001) Solid State Ionics 138:183CrossRefGoogle Scholar
  23. 23.
    Jiang SP, Love JG (2003) Solid State Ionics 158:45CrossRefGoogle Scholar
  24. 24.
    Herle JV, Ihringer R, Cavieres RV, Constantin L, Bucheli O (2001) J Euro Ceram Sci 21:1855CrossRefGoogle Scholar
  25. 25.
    Larrain D, Herle JV, Maréchal F, Favrat D (2003) J Power Sources 118:367CrossRefGoogle Scholar
  26. 26.
    Jiang Y, Wang SZ, Zhang YH, Yan JW, Li WZ (1998) J Electrochem Soc 145:373CrossRefGoogle Scholar
  27. 27.
    Lee HY, Cho WS, Oh SM, Wiemhöfer HD, Göpel W (1995) J Electrochem Soc 142:2659CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Y. J. Leng
    • 1
    Email author
  • S. H. Chan
    • 1
  • K. A. Khor
    • 1
  • S. P. Jiang
    • 1
  1. 1.Fuel Cell Strategic Research Programme, School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore

Personalised recommendations