Journal of Solid State Electrochemistry

, Volume 9, Issue 10, pp 698–705 | Cite as

Nanostructured SnO2-TiO2 films as related to lithium intercalation

  • S. Yu. Vassiliev
  • A. I. Yusipovich
  • Yu. E. Rogynskaya
  • F. Kh. Chibirova
  • A. M. Skundin
  • T. L. Kulova
Original Paper

Abstract

The difference in degradation behavior of titania-doped tin dioxide films is explained by a pronounced effect of the doping level on the film dispersity and fine distribution of titania. A two to three times decrease in nanoparticles sizes in the doped films compared with nanoparticles in SnO2 film (20–30 nm) is revealed by using scanning tunneling microscopy (STM). Such STM data (measured in ex situ configuration) combined with XRD and Mössbauer spectroscopy analysis confirm that the nanoparticles are composed of nanostructured heavily disordered SnO2 and TiO2 rutile solid solution or of amorphous phase containing both SnO2 and TiO2, the content of the crystalline and amorphous phases being approximately equal.

Keywords

Tin dioxide Lithium intercalation Scanning tunneling microscopy and spectroscopy Nanostructure 

Notes

Acknowledgements

The authors are grateful to A.V. Denisov for technical support of STM and spectroscopic studies. The study is supported by RFBR, projects 03-03-32422-a, 02-03-32226-a.

References

  1. 1.
    Tsirlina GA, Roginskaya YuE, Postovalova GG, Vassiliev SYu (1999) Russ J Electrochemistry 35:1385Google Scholar
  2. 2.
    Postovalova GG, Roginskaya YuE, Zavyalov SA, Galyamov BSh, Klimenko NL (2000) Neorganicheskie materialy (in russian) 36:452Google Scholar
  3. 3.
    Courtney IA, Dahl JR (1997) J Electrochem Soc 144:2045Google Scholar
  4. 4.
    Courtney IA, Dahl JR (1997) J Electrochem Soc 144:2943Google Scholar
  5. 5.
    Zhu J, Lu Zh, Aruna ST, Aurbach D, Gedanken A (2000) Chem Matter 12:2557Google Scholar
  6. 6.
    Goward GR, Leroux F, Power WP, Ouvrard G, Dmovski W, Egami T, Nazar LF (1999) Electrochem Solid-State Lett 2:367Google Scholar
  7. 7.
    Idota Y, Matsufuji A, Maekawa Y, Miyasaki T (1997) Science 276:1395Google Scholar
  8. 8.
    Kulova TL, Skundin AM, Roginskaya YuE, Chibirova FKh (2004) Russ J Electrochem 40:484Google Scholar
  9. 9.
    Kulova TL, Roginskaya YuE, Skundin AM (2005) Russ J Electrochem 41:69Google Scholar
  10. 10.
    Roginskaya YuE, Morozova OV (1995) Electrochimica Acta 40:817Google Scholar
  11. 11.
    Postovalova GG, Morozova OV, Galyamov BSh, Lubnin EN, Prutchenko SG, Kozlova NV, Roginskaya YuE (1998) Russi J Inorg Chem 43:36Google Scholar
  12. 12.
    Einaga H (1979) J Chem Soc, Dalton Trans 12:1917Google Scholar
  13. 13.
    Bragina MI, Bobyrenko YuYa (1972) Russ Jo Inorg Chem 17:417Google Scholar
  14. 14.
    Zhurov VV, Ivanov SA (1993) Crystallogr Rep 42:202Google Scholar
  15. 15.
    Vassiliev SYu, Denisov AV (2000) Zhurnal tehnicheskoy fiziki (in russian) 70:100Google Scholar
  16. 16.
    Iveronova VI, Revkevich GP (1972) The theory of X-ray scattering Ed by MSU, p 124–125Google Scholar
  17. 17.
    Vassiliev SYu, Pron’kin SN, Tsirlina GA, Petrii OA (2001) Russ J Electrochem 37:523Google Scholar
  18. 18.
    Cox PA, Egdell RG, Harding C, Patterson WR, Tavener PJ (1982) Surf Sci 123:179Google Scholar
  19. 19.
    Hollamby PC, Aldridge PS, Moretti C, Egdell RG (1993) Surf Sci 280:393Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. Yu. Vassiliev
    • 1
  • A. I. Yusipovich
    • 1
  • Yu. E. Rogynskaya
    • 2
  • F. Kh. Chibirova
    • 2
  • A. M. Skundin
    • 3
  • T. L. Kulova
    • 3
  1. 1.Department of Electrochemistry, Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Research centre “Karpov Institute of Physical Chemistry”MoscowRussia
  3. 3.Frumkin Institute of Electrochemistry Russian Academy of SciencesMoscowRussia

Personalised recommendations