Journal of Solid State Electrochemistry

, Volume 10, Issue 3, pp 185–191 | Cite as

Chemosensitive properties of poly-4,4′-dialkoxy-2,2′-bipyrroles

  • Martin Krondak
  • Gabriela Broncová
  • Sergiy Anikin
  • Andreas Merz
  • Vladimir M. MirskyEmail author
Original Paper


Chemosensitive properties of 4,4′-dimethoxy-2,2′-bipyrrole and 4,4′-dibuthoxy-2,2′-bipyrrole were investigated. These new conductive polymers were polymerized by cyclic voltammetry on the platinum and gold interdigitated electrodes designed for 2- and 4-point measurement of lateral conductivity. Thus, obtained polymers demonstrated high sensitivity to HCl in the parts per million concentration range. Kinetics of the gaseous HCl influence on the ratios of conductivities measured by 2- and 4-point techniques was analyzed. Some response of the polymers conductance towards NH3, NO and oxygen was also observed, but with much lower sensitivity than towards HCl. In aqueous solutions, the polymer conductivity was pH dependent; in comparison with 4,4′-dibuthoxy-2,2′-bipyrrole, the conductivity range of the methoxy derivative was shifted to acidic range for about two pH units. A possibility to use the pH dependence for the development of enzymatic biosensors with pH transducing was demonstrated.


Conductive polymer Sensor Conductivity HCl Alkoxybipyrroles Alkoxypolybipyrroles 



The authors greatly acknowledge H. Breznová for preliminary experiments, O.S. Wolfbeis, V. Král and R. Volf for their fruitful discussions. M.K. and G.B. acknowledge Socrates/Erasmus for financing their stay in the Regensburg University and the Ministry of Education of the Czech Republic for the grant MSM6046137307.


  1. 1.
    Nicolas-Debarnot D, Poncin-Epaillard F (2003) Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta 475:1–15CrossRefGoogle Scholar
  2. 2.
    Leopold S, Herranen M, Carlsson JO, Nyholm L (2003) In situ pH measurement of the self-oscillating Cu(II)-lactate system using an electropolymerized polyaniline film as a micro pH sensor. J Electroanal Chem 547:45–52CrossRefGoogle Scholar
  3. 3.
    Pringsheim E, Zimin D, Wolfbeis OS (2001) Fluorescent beads coated with polyaniline. A novel nanomaterial for optical sensing of pH. Adv Mater (Weinheim, Germany) 13:819–822CrossRefGoogle Scholar
  4. 4.
    Talaie A, Lee JY, Lee YK, Jang J, Romagnoli JA, Taguchi T, Maeder E (2000) Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices. Thin Solid Films 363:163–166CrossRefGoogle Scholar
  5. 5.
    Talaie A (1997) Conducting polymer based pH detector: a new outlook to pH sensing technology. Polymer 38:1145–1150CrossRefGoogle Scholar
  6. 6.
    Ge Z, Brown CW, Sun L, Yang SC (1993) Fiber-optic pH sensor based on evanescent wave absorption spectroscopy. Anal Chem 65:2335–2338CrossRefGoogle Scholar
  7. 7.
    Kukla AL, Shirshov Y, Piletsky SA (1996) Ammonia sensors based on sensitive polyaniline films. Sens Actuators B Chem B 37:135–140CrossRefGoogle Scholar
  8. 8.
    Chabukswar VV, Pethkar S, Athawale AA (2001) Acrylic acid doped polyaniline as an ammonia sensor. Sens Actuators B Chem B 77:657–663CrossRefGoogle Scholar
  9. 9.
    Collins GE, Buckley LJ (1996) Conductive polymer-coated fabrics for chemical sensing. Synth Metals 78:93–101CrossRefGoogle Scholar
  10. 10.
    Matsuguchi M, Io J, Sugiyama G, Sakai Y (2002) Effect of NH3 gas on the electrical conductivity of polyaniline blend films. Synth Metals 128:15–19CrossRefGoogle Scholar
  11. 11.
    Athawale AA, Kulkarni MV (2000) Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sens Actuators B Chem B67:173–177CrossRefGoogle Scholar
  12. 12.
    Meijerink MGH, Strike DJ, de Rooij NF, Koudelka-Hep M (2000) Reproducible fabrication of an array of gas-sensitive chemo-resistors with commercially available polyaniline. Sens Actuators B Chem B 68:331–334CrossRefGoogle Scholar
  13. 13.
    Barker PS, Chen JR, Agbor NE, Monkman AP, Mars P, Petty MC (1994) Vapor recognition using organic films and artificial neural networks. Sens Actuators B Chem 17:143–147CrossRefGoogle Scholar
  14. 14.
    Agbor NE, Petty MC, Monkman AP (1995) Polyaniline thin films for gas sensing. Sens Actuators B Chem B 28:173–179CrossRefGoogle Scholar
  15. 15.
    Xie D, Jiang Y, Pan W, Li D, Wu Z, Li Y (2002) Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sens Actuators B Chem B81:158–164CrossRefGoogle Scholar
  16. 16.
    Barker PS, Di Bartolomeo C, Monkman AP, Petty MC, Pride R (1995) Gas sensing using a charge-flow transistor. Sens Actuators B Chem B 25:451–453CrossRefGoogle Scholar
  17. 17.
    Takeda S (1999) A new type of CO2 sensor built up with plasma polymerized polyaniline thin film. Thin Solid Films 343–344:313–316CrossRefGoogle Scholar
  18. 18.
    Ogura K, Shiigi H (1999) A CO2 sensing composite film consisting of base-type polyaniline and poly(vinyl alcohol). Electrochem Solid-state Lett 2:478–480CrossRefGoogle Scholar
  19. 19.
    Ogura K, Shiigi H, Oho T, Tonosaki T (2000) A CO2 sensor with polymer composites operating at ordinary temperature. J Electrochem Soc 147:4351–4355CrossRefGoogle Scholar
  20. 20.
    Hosseini SH, Entezami AA (2001) Chemical and electrochemical synthesis of homopolymer and copolymers of 3-methoxyethoxythiophene with aniline, thiophene and pyrrole for studies of their gas and vapor sensing. Polym Adv Technol 12:524–534CrossRefGoogle Scholar
  21. 21.
    Sharma S, Nirkhe C, Pethkar S, Athawale AA (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens Actuators B Chem B 85:131–136CrossRefGoogle Scholar
  22. 22.
    Barker PS, Monkman AP, Petty MC, Pride R (1997) A polyaniline/silicon hybrid field effect transistor humidity sensor. Synth Metals 85:1365–1366CrossRefGoogle Scholar
  23. 23.
    Domansky K, Li J, Janata J (1997) Selective doping of chemically sensitive layers on a multisensing chip. J Electrochem Soc 144:L75–L78CrossRefGoogle Scholar
  24. 24.
    Domansky K, Baldwin DL, Grate JW, Hall TB, Li J, Josowicz M, Janata J (1998) Development and calibration of field-effect transistor-based sensor array for measurement of hydrogen and ammonia gas mixtures in humid air. Anal Chem 70:473–481CrossRefGoogle Scholar
  25. 25.
    Kaden H, Jahn H, Berthold M (2004) Study of the glass/polypyrrole interface in an all-solid-state pH sensor. Solid State Ion 169:129–133CrossRefGoogle Scholar
  26. 26.
    Michalska A, Maksymiuk K (2003) Counter-ion influence on polypyrrole potentiometric pH sensitivity. Microchimica Acta 143:163–175CrossRefGoogle Scholar
  27. 27.
    Jahn H, Berthold M, Kaden H (2001) Functional layers for chemical sensors based on conducting polypyrrole. Macromol Symp 164:181–186CrossRefGoogle Scholar
  28. 28.
    Michalska A, Hulanicki A, Lewenstam A (1994) All solid-state hydrogen ion-selective electrode based on a conducting poly(pyrrole) solid contact. Analyst (Cambridge, United Kingdom) 119:2417–2420Google Scholar
  29. 29.
    Hosseini SH, Entezami AA (2003) Chemical and electrochemical synthesis of conducting graft copolymer of vinyl acetate with pyrrole and studies of its gas and vapor sensing. J Appl Polym Sci 90:40–48CrossRefGoogle Scholar
  30. 30.
    Hosseini SH, Entezami AA (2003) Conducting polymer blends of polypyrrole with polyvinyl acetate, polystyrene, and polyvinyl chloride based toxic gas sensors. J Appl Polym Sci 90:49–62CrossRefGoogle Scholar
  31. 31.
    Merz A, Anikin S, Lieser B, Heinze J, John H (2003) 3,3′- and 4,4′-dimethoxy-2,2′-bipyrroles highly electron-rich model compounds for polypyrrole formation. Chemistry–A European Journal 9:449–455CrossRefGoogle Scholar
  32. 32.
    Hao Q, Kulikov V, Mirsky VM (2003) Investigation of contact and bulk resistance of conducting polymers by simultaneous 2- and 4-point technique. Sens Actuators B Chem B 94:352–357CrossRefGoogle Scholar
  33. 33.
    Inganaes O, Erlandsson R, Nylander C, Lundstroem I (1984) Proton modification of conducting polypyrrole. J Phys Chem Solids 45:427–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Martin Krondak
    • 1
  • Gabriela Broncová
    • 1
  • Sergiy Anikin
    • 2
  • Andreas Merz
    • 2
  • Vladimir M. Mirsky
    • 3
    Email author
  1. 1.Department of Analytical ChemistryInstitute of Chemical Technology PraguePragueCzech Republic
  2. 2.Institute of Organic ChemistryUniversity of RegensburgRegensburgGermany
  3. 3.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany

Personalised recommendations