Journal of Solid State Electrochemistry

, Volume 10, Issue 3, pp 168–175 | Cite as

Electrochemical charging and electrocatalysis at hybrid films of polymer-interconnected polyoxometallate-stabilized carbon submicroparticles

  • Magdalena Skunik
  • Beata Baranowska
  • Dina Fattakhova
  • Krzysztof Miecznikowski
  • Malgorzata Chojak
  • Alexander Kuhn
  • Pawel J. Kulesza
Original Paper

Abstract

Using the layer-by-layer technique, carbon submicroparticles, that have been modified and stabilized with monolayers of Keggin-type phosphododecamolybdate (PMo12O403−), can be dispersed in multilayer films of organic polymers, poly(3,4-ethylenedioxythiophene), i.e., PEDOT, or poly(diallyldimethylammonium) chloride, i.e., PDDA, deposited on glassy carbon or indium-tin oxide conductive glass electrodes. The approach involves alternate treatments in the colloidal suspension of PMo12O403−-covered carbon submicroparticles in the solution of monomer, 3,4-ethylenedioxythiophene or in solution of PDDA polymer. Electrostatic attractive interactions between anionic phosphomolybdate-modified carbon submicroparticles and cationic polymer layers permit not only uniform and controlled growth of the hybrid organic–inorganic film but also contribute to its overall stability. The system composed of PMo12O403−-covered carbon submicroparticles dispersed in PEDOT is characterized by fast dynamics of charge transport and has been used to construct symmetric microelectrochemical redox capacitor. The PDDA-based system has occurred to be attractive for electrocatalytic reduction of hydrogen peroxide.

Keywords

Phosphomolybdate Monolayers Carbon particles Poly(diallyldimethylammonium) chloride Poly(3,4-ethylenedioxytiophene) Organic–inorganic networks Multilayer composite films 

Notes

Acknowledgements

This research was supported by Ministry of Science and Information Technology (Poland) under the State Committee for Scientific Research (KBN) grant 7 T09A 05426. Support from the French–Polish Polonium Project is also acknowledged. M.Ch. appreciates fellowship from the Foundation for Polish Science (FNP).

References

  1. 1.
    Ulman A (1991) An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly. Academic, New YorkGoogle Scholar
  2. 2.
    Ingersoll D, Kulesza PJ, Faulkner LR (1994) J Electrochem Soc 141:140CrossRefGoogle Scholar
  3. 3.
    Kuhn A, Anson FC (1996) Langmuir 12:5481CrossRefGoogle Scholar
  4. 4.
    Cheng L, Niu L, Gong J, Dong S (1999) Chem Mater 11:1465CrossRefGoogle Scholar
  5. 5.
    Cheng L, Pacey GE, Cox JA (2001) Electrochim Acta 46:4223CrossRefGoogle Scholar
  6. 6.
    Sfez R, De-Zhong L, Turyan I, Mandler D, Yitzchaik S (2001) Langmuir 17:2556CrossRefGoogle Scholar
  7. 7.
    Ge M, Zhong B, Klemperer W, Gewirth AA (1996) J Am Chem Soc 118:5812CrossRefGoogle Scholar
  8. 8.
    Lira-Cantu M, Gomez-Romero P (1998) Chem Mater 10:698CrossRefGoogle Scholar
  9. 9.
    Kuhn A, Mano N, Vidal C (1999) J Electroanal Chem 462:187CrossRefGoogle Scholar
  10. 10.
    Boyle A, Genies E, Lapkowski M (1989) Synth Metals 28:C769CrossRefGoogle Scholar
  11. 11.
    Gomez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza PJ, Casan-Pastor N, Lira-Cantu M (2003) Electrochem Comm 5:149CrossRefGoogle Scholar
  12. 12.
    Decher G (1997) Science 277:1232CrossRefGoogle Scholar
  13. 13.
    Schumacher W (1997) Carbon black. In: Laden P (ed) Chemistry and technology of water based ink. Blackie, London, pp 153–174Google Scholar
  14. 14.
    Queen EJ (1987) Carbon black. Van Nostrand-Reinhold, New YorkGoogle Scholar
  15. 15.
    Laforgue A, Simon P, Fauvarque JF, Mastragostino M, Soavi F, Sarrau JF, Lailler P, Conte M, Rossi E, Saguatti S (2003) J Electrochem Soc 150:A645–A651CrossRefGoogle Scholar
  16. 16.
    De Heer WA, Chatelain A, Ugarte D (1995) Science 270:1179CrossRefGoogle Scholar
  17. 17.
    Niu C, Sichel EK, Hoch R, Moy D, Tennet H (1997) Appl Phys Lett 70:1480CrossRefGoogle Scholar
  18. 18.
    Collins PG, Zetti A, Bando H, Thess A, Smalley RE (1997) Science 278:100CrossRefGoogle Scholar
  19. 19.
    Hafner JH, Cheung CL, Leiber CM (1998) Nature 393:49CrossRefGoogle Scholar
  20. 20.
    Frackowiak E (2004) Carbon nanotubes for storage of energy: super capacitors, encyclopedia of nanoscience and nanotechnology. Dekker, New York, pp 537–546Google Scholar
  21. 21.
    Tibbetts GG, Meisner GP, Olk CH (2001) Carbon 39:2291CrossRefGoogle Scholar
  22. 22.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787CrossRefPubMedGoogle Scholar
  23. 23.
    Dominko R, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) J Electrochim Acta 48:3709CrossRefGoogle Scholar
  24. 24.
    Gall RD, Hill CL, Walker JE (1996) Chem Mater 8:2523CrossRefGoogle Scholar
  25. 25.
    Ge M, Zhong B, Klemperer W, Gewirth AA (1996) J Am Chem Soc 118:5812CrossRefGoogle Scholar
  26. 26.
    Kulesza PJ, Chojak M, Miecznikowski K, Lewera A, Malik MA, Kuhn A (2002) Electrochem Comm 4:510CrossRefGoogle Scholar
  27. 27.
    Karnicka K, Chojak M, Miecznikowski K, Skunik M, Baranowska B, Kolary A, Piranska A, Palys B, Adamczyk L, Kulesza PJ (2005) Bioelectrochem 66:79CrossRefGoogle Scholar
  28. 28.
    Kulesza PJ, Chojak M, Karnicka K, Miecznikowski K, Palys B, Lewera A, Wieckowski A (2004) Chem Mater 16:4128CrossRefGoogle Scholar
  29. 29.
    Garrigue P, Delville MH, Labrugere C, Cloute E, Kulesza PJ, Morand JP, Kuhn A (2004) Chem Mater 16:2984CrossRefGoogle Scholar
  30. 30.
    Kloster GM, Anson FC (1999) Electrochim Acta 44:2271CrossRefGoogle Scholar
  31. 31.
    Huang MH, Bi LH, Shen Y, Liu BF, Dong SJ (2004) J Phys Chem 108:9780Google Scholar
  32. 32.
    Qin S, Qin D, Ford WT, Zhang Y, Kotov N (2005) Chem Mater 17:2131CrossRefGoogle Scholar
  33. 33.
    Qian L, Yang X (2005) Electrochem Comm 7:547CrossRefGoogle Scholar
  34. 34.
    Kulesza PJ, Skunik M, Baranowska B, Miecznikowski K, Chojak K, Karnicka K, Frackowiak E, Béguin F, Kuhn A, Delville MH, Starobrzynska B, Ernst BA (2005) Electrochim Acta (in press)Google Scholar
  35. 35.
    Kang Z, Wang Y, Wang E, Lian S, Gao L, You W, Hu C, Xu L (2004) Solid State Comm 129:559CrossRefGoogle Scholar
  36. 36.
    Pope MT (1983) Heteropoly and isopoly oxometallates, Chap. 2 and 3. Springer, Berlin Heidelberg New YorkGoogle Scholar
  37. 37.
    Kulesza PJ, Malik MA (1999) Interfacial electrochemistry, Chap 37. In: Wieckowski A (ed) Solid-State Voltammetry. Marcel Dekker, New YorkGoogle Scholar
  38. 38.
    Kulesza PJ, Cox JA (1998) Electroanalysis 10:73CrossRefGoogle Scholar
  39. 39.
    Martel D, Kuhn A, Kulesza PJ, Galkowski M, Malik MA (2001) Electrochim Acta 46:4197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Magdalena Skunik
    • 1
  • Beata Baranowska
    • 1
  • Dina Fattakhova
    • 2
  • Krzysztof Miecznikowski
    • 1
  • Malgorzata Chojak
    • 1
  • Alexander Kuhn
    • 2
  • Pawel J. Kulesza
    • 1
  1. 1.Department of ChemistryUniversity of WarsawWarsawPoland
  2. 2.Laboratoire d‘Analyse Chimique par Reconnaissance Moléculaire Ecole Nationale Supérieure de Chimie et de Physique de BordeauxPessacFrance

Personalised recommendations