Journal of Solid State Electrochemistry

, Volume 10, Issue 11, pp 905–913

Simultaneous determination of dopamine and ascorbic acid on poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode

  • S. Senthil Kumar
  • J. Mathiyarasu
  • K. L. N. Phani
  • V. Yegnaraman
Original Paper


Detection of dopamine (DA) in the presence of excess of ascorbic acid (AA) has been demonstrated using a conducting polymer matrix, poly (3,4-ethylenedioxythiophene) (PEDOT) film in neutral buffer (PBS 7.4) solution. The PEDOT film was deposited on a glassy carbon electrode by electropolymerization of EDOT from acetonitrile solution. Atomic force microscopy studies revealed that the electrodeposited film was found to be approximately 100 nm thick with a roughness factor of 2.6 nm. Voltammetric studies have shown catalytic oxidation of DA and AA on PEDOT modified electrode and can afford a peak potential separation of ∼0.2 V. It is speculated that the cationic PEDOT film interacts with the negatively charged ascorbate anion through favorable electrostatic interaction, which results in pre-concentration at a less anodic value. The positively charged DA tends to interact with the hydrophobic regions of PEDOT film through hydrophobic–hydrophobic interaction thus resulting in favorable adsorption on the polymer matrix. Further enhancement in sensitivity to micro molar level oxidation current for DA/AA oxidation was achieved by square wave voltammetry (SWV) which can detect DA at its low concentration of 1 μM in the presence of 1000 times higher concentration of AA (1 mM). Thus the PEDOT modified electrode exhibited a stable and sensitive response to DA in the presence of AA interference.


Conducting polymer Poly (3,4-Ethylenedioxythiophene) PEDOT Dopamine Ascorbic acid Hydrophobic 


  1. 1.
    Swager TM (1998) Acc Chem Res 31:201CrossRefGoogle Scholar
  2. 2.
    Mark HB, Atta N, Petticrew KL, Zimmer H, Shi Y, Lunsford SK, Rubinson JF, Galal A (1995) Bioelectrochem Bioenergetics 38:229CrossRefGoogle Scholar
  3. 3.
    Krishnamoorthy K, Gokhale RS, Contractor AQ, Kumar A (2004) Chem Commun 7:820CrossRefGoogle Scholar
  4. 4.
    Yamato H, Ohwa M, Wernet W (1995) J Electroanal Chem 397:163CrossRefGoogle Scholar
  5. 5.
    Grönendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater12:481CrossRefGoogle Scholar
  6. 6.
    Sakmeché A, Aaron JJ, Fall M, Aeiyach A, Jouini M, Lacroix JC, Lacaze PC (1996) Chem Commun 2723Google Scholar
  7. 7.
    Vasantha VS, Phani KLN (2002) J Electroanal Chem 520:79CrossRefGoogle Scholar
  8. 8.
    Dietrich M, Heinze J, Heywang G, Jonas F (1994) J Electroanal Chem 369:87CrossRefGoogle Scholar
  9. 9.
    Grönendaal LB, Zotti G, Aubert P-H, Waybright SM, Reynolds JR (2003) Adv Mater 15:855CrossRefGoogle Scholar
  10. 10.
    Venton BG, Wightman RM (2003) Anal Chem 75:414ACrossRefGoogle Scholar
  11. 11.
    Zhang L, Sun Y-G (2001) Anal Sci 17:939CrossRefPubMedGoogle Scholar
  12. 12.
    Wen X-L, Jia Y-H, Liu Z-Li (1999) Tatlanta 50:1027CrossRefGoogle Scholar
  13. 13.
    Wang J, Walcarius A (1996) J Electroanal Chem 407:183CrossRefGoogle Scholar
  14. 14.
    Ferreira M, Dinelli LR, Wohnrath K, Batista AA, Oliveira ON Jr (2004) Thin Solid Films 446:301CrossRefGoogle Scholar
  15. 15.
    Wang J, Tuzhi P (1986) Anal Chem 58:3257CrossRefPubMedGoogle Scholar
  16. 16.
    Oni J, Nyokong T (2001) Anal Chim Acta 434:9CrossRefGoogle Scholar
  17. 17.
    Dalmia A, Liu CC, Savinell RF (1997) J Electroanal Chem 430:205CrossRefGoogle Scholar
  18. 18.
    Chen MA, Li HL (1998) Electroanalysis 10:477CrossRefGoogle Scholar
  19. 19.
    Raj CR, Tokuda K, Ohsaka T (2001) Bioelectrochem 53:83CrossRefGoogle Scholar
  20. 20.
    Arrigan DWA, Ghita M, Beni V (2004) Chem Commun 732Google Scholar
  21. 21.
    Senthilkumar S, Mathiyarasu J, Lakshminarasimha Phani K (2005) J Electroanal Chem 578:95CrossRefGoogle Scholar
  22. 22.
    Kvarnström C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) Electrochim Acta 44:2737CrossRefGoogle Scholar
  23. 23.
    Lee HJ, Park S-M (2004) J Phys Chem B 108:16365CrossRefGoogle Scholar
  24. 24.
    Giz MJ, de Albuquerque Matanhao SL, Torresi RM (2000) Electrochemistry Communicaitons 2:377CrossRefGoogle Scholar
  25. 25.
    Roy PR, Okajima T, Ohsaka T (2003) Bioelectrochemistry 59:11CrossRefPubMedGoogle Scholar
  26. 26.
    Saraceno RA, Pack JG, Ewing AG (1986) J Electroanal Chem 197:265CrossRefGoogle Scholar
  27. 27.
    Martin CR, Van Dyke LS (1992) Mass and charge transport in electronically conductive polymers. In: Murray RW (ed) Molecular design of electrode surfaces. John Wiley, New York, pp 403–424Google Scholar
  28. 28.
    Lyons MEG (1994) Charge Percolation in Electroactive Polymers. In: Lyons MEG (ed) Electroactive polymer electrochemistry Part I. Plenum Press, New York, pp 65–116Google Scholar
  29. 29.
    Schöpf G, Kößmehl G (1997) Polythiophenes–electrically conductive polymers. Springer, Germany, 80pGoogle Scholar
  30. 30.
    Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486CrossRefGoogle Scholar
  31. 31.
    Gao Z, Huang H (1998) Chem Commun 2107Google Scholar
  32. 32.
    Bone RGA, Villar HO (1995) J Mol Graph 13:201CrossRefPubMedGoogle Scholar
  33. 33.
    Anjo DM, Kahr M, Khodabakhsh MM, Nowinski S, Wanger M (1989) Anal Chem 61:2603CrossRefGoogle Scholar
  34. 34.
    Higgins SJ, Lovell KV, Rajapakse RMG, Walsby NM (2003) J Mater Chem 13:2485CrossRefGoogle Scholar
  35. 35.
    Gough DA, Leypoldt JK (1979) Anal Chem 51:439CrossRefGoogle Scholar
  36. 36.
    Gerhardt G, Adams RN (1982) Anal Chem 54:2618CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. Senthil Kumar
    • 1
  • J. Mathiyarasu
    • 1
  • K. L. N. Phani
    • 1
  • V. Yegnaraman
    • 1
  1. 1.Electrodics & Electrocatalysis DivisionCentral Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations