Journal of Solid State Electrochemistry

, Volume 9, Issue 10, pp 674–683 | Cite as

Electrochemical characteristics of Ce0.8Gd0.2O1.9|La0.6Sr0.4CoO3-δ + Ce0.8Gd0.2O1.9 half-cell

  • Enn Lust
  • Gunnar Nurk
  • Silvar Kallip
  • Indrek Kivi
  • Priit Möller
Original Paper


The analysis of the medium temperature half-cell Ce0.8Gd0.2O1.9|70 wt% La0.6Sr0.4CoO3-δ (LSCO) + 30 wt % Ce0.8Gd0.2O1.9 (CGO) has been made by electrochemical impedance, cyclic voltammetry and chronoamperometry. The shape of complex impedance plots depends on temperature and cathodic polarisation of the electrode. Nyquist (Z′′, Z′-) plots were fitted by equivalent circuit taking into account the electrolyte properties (at very high frequencies), charge transfer process at grain boundaries (at high frequencies), and medium and low frequency O2 reduction process at the cathode surface and inside the porous cathode material. Two different time constants have been obtained for the cathode process, i.e. for electroreduction of oxygen. It was found that the addition of CGO into the cathode material (LSCO) only somewhat decreases the surface catalytic activity but the noticeably higher low-frequency resistance (i.e. mainly diffusion-like mass transfer resistance RD) values at lower temperatures have been calculated. It was found that the mainly bulk diffusion-limited process at T≤773 K deviates toward the kinetically mixed process (diffusion + charge transfer) with increasing temperature.


Solid oxide fuel cell Ce0.8Gd0.2O1.9 Mixed cathode La0.6Sr0.4CoO3-δ + Ce0.8Gd0.2O1.9 



This project is supported by AS Elcogen under the grants LFKFE01081 and LFKFE03006.


  1. 1.
    Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) J Electrochem Soc 134:2656Google Scholar
  2. 2.
    Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) J Solid State Chem 80:102Google Scholar
  3. 3.
    Minh NQ (1993) J Am Ceram Soc 76:563Google Scholar
  4. 4.
    van Hassel BA, Kawada T, Sakai N, Yokokawa H, Dokiya M, Bouwmeester HJM (1993) Solid State Ionics 66:295Google Scholar
  5. 5.
    Reinhart G, Baitinger V, Göppel W (1995) Ionics 1:504Google Scholar
  6. 6.
    Adler SB, Lane JA, Steele BCH (1996) J Electrochem Soc 143:3554Google Scholar
  7. 7.
    Mizusaki J, Tabaci J, Matsuura T, Yamauchi S, Fueki K (1989) J Electrochem Soc 136:2082Google Scholar
  8. 8.
    Kilner JA, De Souza RA, Fullarton IC (1996) Solid State Ionics 86–88:703Google Scholar
  9. 9.
    Hibbert DB, Tseung ACC (1978) J Electrochem Soc 125:74Google Scholar
  10. 10.
    Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Solid State Ionics 53–56:597Google Scholar
  11. 11.
    Steele BCH (1995) Solid State Ionics 75:157Google Scholar
  12. 12.
    Philips MB, Sammes NM, Yamamoto O (1999) Solid State Ionics 123:131Google Scholar
  13. 13.
    Gödickemeier M, Sasaki K, Gauckler LJ, Riess I (1996) Solid State Ionics 86–88:691Google Scholar
  14. 14.
    Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ionics 129:63CrossRefGoogle Scholar
  15. 15.
    Adler SB (1998) Solid State Ionics 111:125Google Scholar
  16. 16.
    Siebert E, Hammouche A, Kleitz M (1995) Electrochim Acta 40:1741Google Scholar
  17. 17.
    Wang S, Lu X, Liu M (2002) J Solid State Electrochem 6:384Google Scholar
  18. 18.
    Jiang SP (2002) Solid State Ionics 146:1Google Scholar
  19. 19.
    Tu HY, Takeda Y, Imanishi N, Yamamoto O (1999) Solid State Ionics 117:277Google Scholar
  20. 20.
    Dusastre V, Kilner JA (1999) Solid State Ionics 126:163Google Scholar
  21. 21.
    ten Elshof JE, Bouwmeester HJM, Verweij H (1996) Solid State Ionics 89:97Google Scholar
  22. 22.
    Steele BCH (2000) Solid State Ionics 129:95CrossRefGoogle Scholar
  23. 23.
    Tai L-W, Nashrallah MM, Anderson HU, Sparlin DM, Sehlin S R (1995) Solid State Ionics 76:259Google Scholar
  24. 24.
    Sahibzada M, Steele BCH, Barth D, Rudkin RA, Metcalfe IS (1999) Fuel 78:639Google Scholar
  25. 25.
    Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) Solid State Ionics 146:203Google Scholar
  26. 26.
    Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) J Electrochem Soc 149:A927Google Scholar
  27. 27.
    Kharton VV, Kovalevsky AV, Viskup AP, Shaula AL, Figueiredo FM, Naumovich EN, Marques FMB (2003) Solid State Ionics 160:247Google Scholar
  28. 28.
    Weber A, Ivers-Tiffee E (2004) Power sources., online
  29. 29.
    Inaba H, Tagawa H (1996) Solid State Ionics 83:1CrossRefGoogle Scholar
  30. 30.
    Kharton VV, Yaremchenko AA, Naumovich EN (1999) J Solid State Electrochem 3:303Google Scholar
  31. 31.
    Manning PS, Sirman JD, Kilner JA (1997) Solid State Ionics 93:125Google Scholar
  32. 32.
    Lane J A, Kilner J A (2000) Solid State Ionics 136–137:927Google Scholar
  33. 33.
    Ji Y, Kilner JA, Carolan MF (2004) J Eur Ceramic Soc 24:3613Google Scholar
  34. 34.
    Nurk G, Kallip S, Kivi I, Möller P, Lust E (2004) Ext. abstracts of 6th European solid oxide fuel cell forum, Lutzern, p 887Google Scholar
  35. 35.
    Lust E, Nurk G, Moller P, Kivi I, Kallip S, Janes A, Mändar H (2003) In: Proceedings of the international symposium on solid oxide fuel cells. Paris, p 1176Google Scholar
  36. 36.
    Nurk G, Möller P, Kivi I, Kallip S, Jänes A, Lust E (2003) Medium temperature half-cells for SOFCs. Extend Abstr of SOFC Forum. Miami Beach, p 427Google Scholar
  37. 37.
    Lust E, Nurk G, Kallip S, Kivi I, Möller P, Nigu P (2005) Electrochemical and impedance characteristics of some medium temperature half-cells for SOFC. J Electrochem Soc (in press)Google Scholar
  38. 38.
    MacDonald RJ, ZView for Windows (Version 2.7). Scribner, Southern PinesGoogle Scholar
  39. 39.
    Macdonald JR, Johnson WB (1987) In: Maclonald JR (ed) Impedance spectroscopy: emphasizing solid materials and systems. Wiley, New YorkGoogle Scholar
  40. 40.
    Sluyters-Rehbach M, Sluyters J (1970) In: Bard A (ed) Electroanalytica chemistry, vol 4. Macel Dekker, New York, p 76Google Scholar
  41. 41.
    Lasia A (1999) In: Conway BE, Bockris J O’M, White RE (eds) Modern aspects of electrochemistry, vol 32. Kluwer/Plenum, New York, p 143Google Scholar
  42. 42.
    Gabrielli C (1995) In: Rubinstein I (ed) Physical electrochemistry—principles, methods and application. Marcel Dekker, New York, p 257Google Scholar
  43. 43.
    Jacobsen T, West K (1992) Electrochim Acta 40:233Google Scholar
  44. 44.
    Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Bueno RR (1999) J Electroanal Chem 475:152CrossRefGoogle Scholar
  45. 45.
    Bisquert J, Compte A (2001) J Electroanal Chem 499:112Google Scholar
  46. 46.
    Chan SH, Chen XJ, Khor KA (2004) J Electrochem Soc 151:A164Google Scholar
  47. 47.
    Kim JW, Virkar AV, Fung KZ, Metha K, Singhal SC (1999) J Electrochem Soc 146:69Google Scholar
  48. 48.
    van Heuveln FH, Bouwmeester HJM (1997) J Electrochem Soc 144:134Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Enn Lust
    • 1
  • Gunnar Nurk
    • 1
  • Silvar Kallip
    • 1
  • Indrek Kivi
    • 1
  • Priit Möller
    • 1
  1. 1.Institute of Physical ChemistryUniversity of TartuTartuEstonia

Personalised recommendations