Journal of Solid State Electrochemistry

, Volume 9, Issue 7, pp 512–519 | Cite as

Mapping of defects in self-assembled monolayers by polymer decoration

  • Dusan Losic
  • Joe G. Shapter
  • J. Justin. Gooding
Original Paper

Abstract

A new method mapping the defects in self-assembled monolayers (SAMs) is described. The method is based on electrochemical polymerisation of nonconductive tyramine in defect sites of a monolayer and subsequent visualisation of the polymer structures by atomic force microscopy (AFM). SAMs of hexadecanthiol (HDT) on gold prepared by deposition from solution and microcontact printing were used as a model for this study. The method allows easy mapping of defects on monolayers and provides information about their shape, size, size distribution, defect density and spatial distribution. Comparative electrochemical characterisation of defects in SAMs before and after polymerisation shows that polymer growth occurs on the sites of uncovered gold. The approach should be applicable for the characterisation of defects in other types of ultra-thin organic films on conducting surfaces.

Keywords

Self-assembled monolayers Defects Electrochemical polymerisation Polytyramine Scanning tunnelling microscopy Atomic force microscopy 

References

  1. 1.
    Ulman A (1991) Ultrathin organic films. Academic, San DiegoGoogle Scholar
  2. 2.
    Flink S, van Veggel FCJM, Reinhoudt DN (2000) Adv Mater 12:1328CrossRefGoogle Scholar
  3. 3.
    Finklea HO (1996) Self-assembled monolayers of thiol electrodes. In: Electroanalytical chemistry, a series of advances, vol 19. pp109–335Google Scholar
  4. 4.
    Nuzzo RG, Allara DL (1983) J Am Chem Soc 105:4481Google Scholar
  5. 5.
    Gooding JJ, Hibbert DB (1999) TRAC 18:525Google Scholar
  6. 6.
    Gooding JJ, Mearns FJ, Yang W, Liu J (2003) Electroanalysis 15:81CrossRefGoogle Scholar
  7. 7.
    Xia Y, Whitesides GM (1998) Angew Chem Int Ed 37:551CrossRefGoogle Scholar
  8. 8.
    Gooding JJ, Wibowo R, Liu J, Yang W, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) J Am Chem Soc 125:9006CrossRefPubMedGoogle Scholar
  9. 9.
    Delmarche E, Michel B, Kang H, Gerber C (1994) Langmuir 9:3660Google Scholar
  10. 10.
    Finklea HO, Avery S, Lynch M, Furtsch T (1987) Langmuir 3: 409Google Scholar
  11. 11.
    Badia A, Lenox RB, Reven L (2000) Acc Chem Res 33:475CrossRefPubMedGoogle Scholar
  12. 12.
    Finklea HO, Snider DA, Fedyk J, Sabatini E, Gafni Y, Rubinstein I (1993) Langmuir 9:3660Google Scholar
  13. 13.
    Losic D, Gooding JJ, Shapter JG (2001) Langmuir 17:3307CrossRefGoogle Scholar
  14. 14.
    Losic D, Shapter JG, Gooding JJ (2001) Electrochem Commun 3:722CrossRefGoogle Scholar
  15. 15.
    Losic D, Shapter JG, Gooding JJ (2001) Aust J Chem 54:643CrossRefGoogle Scholar
  16. 16.
    Losic D, Gooding JJ, Shapter JG, Hibbert DB, Short K (2001) Electroanalysis 13:1385CrossRefGoogle Scholar
  17. 17.
    Losic D, Shapter JG, Gooding JJ (2002) Electrochem Commun 4:953CrossRefGoogle Scholar
  18. 18.
    Butt H-G, Seifert, Bamberg E (1993) J Phys Chem 97:7316Google Scholar
  19. 19.
    Poirier GE (1997) Chem Rev 97:1117CrossRefPubMedGoogle Scholar
  20. 20.
    McCarley RL, Dunaway DJ, Willicut RJ (1993) Langmuir 9:2775Google Scholar
  21. 21.
    Han T, Beebe TP Jr (1994) Langmuir 10:2706Google Scholar
  22. 22.
    Sondag-Huethorst JAM, Schönenberger C, Fokkink LGJ (1994) J Phys Chem 98:6826Google Scholar
  23. 23.
    Schwarz UD, Haefke H, Reimann P, Gűntherodt H-J (1994) J Microscopy 173:183Google Scholar
  24. 24.
    Losic D, Short K, Gooding JJ, Shapter JG (2004) J Serb Chem Soc 69:93Google Scholar
  25. 25.
    Sun L, Crooks RM (1991) J Electrochem Soc 138:L23Google Scholar
  26. 26.
    Sun L, Crooks RM (1993) Langmuir 9:1951Google Scholar
  27. 27.
    Zhao Z-M, Wilbur JL, Whitesides GM (1996) Langmuir 12:3257CrossRefGoogle Scholar
  28. 28.
    Situmorang M, Gooding JJ, Hibbert DB, Barnett D (1998) Biosens Biolectron 13:953CrossRefGoogle Scholar
  29. 29.
    Situmorang M, Gooding JJ, Hibbert DB, Barnett D (2001) Electroanalysis 13:1469CrossRefGoogle Scholar
  30. 30.
    Mazurkiewiecz J, Mearns FJ, Losic D, Rogers C, Gooding JJ, Shapter JG (2002) Vac Sci Techn B 20:2265CrossRefGoogle Scholar
  31. 31.
    Porter MD, Bright TB, Allara D, Chidsey CED (1987) J Am Chem Soc 109:3559Google Scholar
  32. 32.
    Sabatini E, Rubinstein I, Maoz R, Sagiv J (1987) J Electroanal Chem 219:365CrossRefGoogle Scholar
  33. 33.
    Rogers BL, Shapter JG, Skinner WM, Gascoigne K (2000) Rev Sci Instrum 71:1702CrossRefGoogle Scholar
  34. 34.
    Losic D, Shapter JG, Gooding JJ (2002) Langmuir 18:5422CrossRefGoogle Scholar
  35. 35.
    Hwang B-J, Santhanam R, Lin Y-L (2003) Electroanalysis 15:115CrossRefGoogle Scholar
  36. 36.
    Delvaux M, Duchet J, Stavaux P-Y, Legras R, Demoustier-Champagne S (2000) Synthetic Metals 113:275CrossRefGoogle Scholar
  37. 37.
    Amatore C, Savéant JM, Tessier D (1983) J Electroanal Chem 147:39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Dusan Losic
    • 1
  • Joe G. Shapter
    • 1
  • J. Justin. Gooding
    • 2
  1. 1.School of Chemistry, Physics and Earth ScienceThe Flinders UniversityAdelaideAustralia
  2. 2.School of ChemistryThe University of New South WalesSydneyAustralia

Personalised recommendations