Journal of Solid State Electrochemistry

, Volume 9, Issue 8, pp 581–589 | Cite as

Aqueous electrochemistry of binuclear copper complex with Robson-type ligand: dissolved versus surface-immobilized reactant

  • Nataliya V. RoznyatovskayaEmail author
  • Sergey Yu. Vassiliev
  • Alexander I. Yusipovich
  • Galina A. Tsirlina
  • Vladimir V. Roznyatovskii
Original Paper


The electrochemical behaviour of binuclear copper complex with Robson-type ligand [Cu2L]Cl2 in aqueous medium is studied by cyclic voltammetry at highly oriented pyrolytic graphite, glassy carbon and gold electrodes. The overall reduction from solution of this reactant is found to be irreversible resulting in metallic copper formation. It is also complicated by chemical transformations of Cu(I) containing species. When attached to carbon support, [Cu2L]Cl2 is redox active in aqueous medium in the same potential range. The reduction is more reversible if reactant is immobilized at HOPG surface, and is in general agreement with reversible copper demetallation scheme. For dissolved reactant, the contribution of surface-attached species is screened by predominating voltammetric response of irreversible reduction. These conclusions are supported by data on the reduction of free protonated ligand and its hydrolysis products. Ex situ STM is applied to characterize electrode surfaces modified by [Cu2L]Cl2. Adsorbate monolayer of periodic structure is observed at highly oriented pyrolytic graphite (HOPG). Adsorption is more disordered at GC and less strong at polycrystalline gold support.


Binuclear copper macrocyclic complex STM images Cyclic voltammetry Electroreduction Aqueous medium 



The authors would like to thank Egor Smurnii (Moscow State University) for appreciable contribution into synthesis. Russian Foundation for Basic Research (Grant 02-03-33 321a) and Council for Grants of President of Russian Federation for leading scientific schools (NSh-2089.2003.3) are acknowledged for financial support.


  1. 1.
    Robson R (1970) Inorg Nucl Chem Lett 6:125CrossRefGoogle Scholar
  2. 2.
    Okawa H, Kida S (1971) Inorg Nucl Chem Lett 7:751CrossRefGoogle Scholar
  3. 3.
    Pilkington NH, Robson R (1970) Aust J Chem 23:2225Google Scholar
  4. 4.
    Moutet J-C, Saint-Aman E, Ungureanu E-M (2001) Electrochim Acta 46:2733CrossRefGoogle Scholar
  5. 5.
    Roznyatovskaya NV, Tsirlina GA, Roznyatovskii VV, Reshetova MD, Ustynuyk YuA (2004) Russ J Electrochem 40:(in press)Google Scholar
  6. 6.
    Long RC, Hendrickson DN (1983) J Am Chem Soc 105:1513Google Scholar
  7. 7.
    Gagne RR, Koval CA, Smith TJ (1979) J Am Chem Soc 101:4571Google Scholar
  8. 8.
    Mandal SK, Adhikary B, Nag K (1986) J Chem Soc Dalton Trans 6:1175CrossRefGoogle Scholar
  9. 9.
    Nanda KK, Addison AW, Paterson N, Sinn E, Thompson LK, Sakaguchi U (1998) Inorg Chem 37:1028CrossRefGoogle Scholar
  10. 10.
    Marken F, Cromie S, McKee V (2003) J Solid State Electrochem 7:141Google Scholar
  11. 11.
    Roznyatovskii VV, Borisova NE, Reshetova MD, Ustynuyk YuA, Alexandrov GG, Eremenko IL, Moiseev II (2004) Izvest Acad Nauk (in Russian) 6:1161Google Scholar
  12. 12.
    Black D, Blake AJ, Finn RL, Lindoy LF, Nezhadali A, Rougnaghi G, Tasker PA, Schroder M (2002) J Chem Commun 4:340CrossRefGoogle Scholar
  13. 13.
    Vassiliev SYu, Denisov AV (2000) Zh Tekhn Fiz (in Russian) 70:100Google Scholar
  14. 14.
    Danilov AI, Molodkina EB, Polukarov YuM (2002) Russ J Electrochem 38:732CrossRefGoogle Scholar
  15. 15.
    Baldo MA, Bragato C, Mazzocchin GA, Daniele S (1998) Electrochim Acta 43:3413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Nataliya V. Roznyatovskaya
    • 1
    Email author
  • Sergey Yu. Vassiliev
    • 1
  • Alexander I. Yusipovich
    • 1
  • Galina A. Tsirlina
    • 1
  • Vladimir V. Roznyatovskii
    • 1
  1. 1.Department of Electrochemistry, Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations