Advertisement

Journal of Solid State Electrochemistry

, Volume 9, Issue 5, pp 312–319 | Cite as

Potentiometric sensors based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated calix[4]arene and calix[4]resorcarenes

  • Mercedes Vázquez
  • Johan Bobacka
  • Minna Luostarinen
  • Kari Rissanen
  • Andrzej Lewenstam
  • Ari Ivaska
Article

Abstract

Potentiometric ion sensors have been prepared by galvanostatic electrosynthesis of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with p-sulfonated calix[4]arene (C[4]S) and p-methylsulfonated calix[4]resorcarenes (R n [4]S) with alkyl substituents of different chain length (R1=CH3; R2=C2H5; R3=C6H13). The bowl-shape of these doping ions makes them suitable as ionic recognition sites, and their bulky character is expected to prevent them from leaching out of the conducting polymer membrane. For comparison, sensors based on PEDOT doped with poly(styrene sulfonate) (PSS) and poly(vinyl sulfonate) (PVS) were also constructed. The resulting GC/PEDOT electrodes were conditioned in 0.01 mol L−1 AgNO3 and their performance as Ag+ ion-selective electrodes (ISEs) studied. Results reveal that selectivity and lifetime of the electrodes is affected by the doping anion structure, although all electrodes show selectivity towards Ag+ ions. Interaction of Ag+ with sulfur atoms present in the conducting polymer backbone is considered to be the main reason for this behavior. A second set of electrodes was constructed and conditioned in 0.1 mol L−1 KCl. These electrodes were tested in chloride solutions of quaternary ammonium cations, showing that C[4]S and R2[4]S exhibit significant sensitivity towards pyridinium.

Keywords

Ion-selective electrode Silver Calix[4]arene Calix[4]resorcarene Conducting polymer 

Notes

Acknowledgments

The authors are grateful to the ERASMUS exchange student Jens Künnemeyer for experimental assistance. Financial support from the National Technology Agency (TEKES) and the Academy of Finland are gratefully acknowledged. This work is part of the activities at the Åbo Akademi Process Chemistry Centre within the Finnish Centre of Excellence Programme (2000–2005) by the Academy of Finland.

References

  1. 1.
    Bobacka J, Ivaska A, Lewenstam A (2003) Electroanalysis 15:366CrossRefGoogle Scholar
  2. 2.
    Cadogan A, Gao Z, Lewenstam A, Ivaska A (1992) Anal Chem 64:2496Google Scholar
  3. 3.
    Vázquez M, Bobacka J, Ivaska A, Lewenstam A (2004) Talanta 62:57CrossRefGoogle Scholar
  4. 4.
    Suzuki H (2000) Mater Sci Eng C 12:55CrossRefGoogle Scholar
  5. 5.
    Migdalski J, Blaz T, Lewenstam A (1996) Anal Chim Acta 322:141CrossRefGoogle Scholar
  6. 6.
    Bobacka J (1999) Anal Chem 71:4932CrossRefGoogle Scholar
  7. 7.
    Vázquez M, Bobacka J, Ivaska A, Lewenstam A (2002) Sens Actuators B 82:7CrossRefGoogle Scholar
  8. 8.
    Mandolini L, Ungaro R (eds) (2000) Calixarenes in action. Imperial College Press, LondonGoogle Scholar
  9. 9.
    Shinkai S (1993) Tetrahedron 49:8933CrossRefGoogle Scholar
  10. 10.
    Bidan G, Niel M-A (1997) Synth Met 84:255CrossRefGoogle Scholar
  11. 11.
    Kaneto K, Bidan G (1998) Thin Solid Films 331:272CrossRefGoogle Scholar
  12. 12.
    Davey JM, Too CO, Ralph SF, Kane-Maguire LAP, Wallace GG, Partridge AC (2000) Macromolecules 33:7044CrossRefGoogle Scholar
  13. 13.
    Kazakova EK, Makarova NA, Ziganshina AU, Muslinkina LA, Muslinkin AA, Habicher WD (2000) Tetrahedron Lett 41:10111CrossRefGoogle Scholar
  14. 14.
    Umezawa Y, Umezawa K, Sato H (1995) Pure Appl Chem 67:507Google Scholar
  15. 15.
    Koryta J, Dvorak J, Kavan L (eds) (1993) Principles of electrochemistry, 2nd edn. Wiley, Chichester, p 38Google Scholar
  16. 16.
    Mäkinen M, Vainiotalo P, Nissinen M, Rissanen K (2003) J Am Soc Mass Spectrom 14:143CrossRefPubMedGoogle Scholar
  17. 17.
    Van der Veen NJ, Egberink RJM, Engbersen JFJ, van Veggel FJCM, Reinhoudt DN (1999) Chem Commun 8:681CrossRefGoogle Scholar
  18. 18.
    Bobacka J, Alaviuhkola T, Hietapelto V, Koskinen H, Lewenstam A, Lämsä M, Pursiainen J, Ivaska A (2002) Talanta 58:341CrossRefGoogle Scholar
  19. 19.
    Ragoisha GA, Jovanović VM, Avramov-Ivić MA, Atanasoski RT, Smyrl WH (1991) J Electroanal Chem 319:373CrossRefGoogle Scholar
  20. 20.
    Dekanski A, Stevanović J, Stevanović R, Jovanović VM (2001) Carbon 39:1207CrossRefGoogle Scholar
  21. 21.
    Bühlmann P, Pretsch E, Bakker E (1998) Chem Rev 98:1593CrossRefPubMedGoogle Scholar
  22. 22.
    Bobacka J, Väänänen V, Lewenstam A, Ivaska A (2004) Talanta 63:135CrossRefGoogle Scholar
  23. 23.
    Lebedev MY, Lauritzen MV, Curzon AE, Holdcroft S (1998) Chem Mater 10:156CrossRefGoogle Scholar
  24. 24.
    Zhang AQ, Cui CQ, Lee JY, Loh FC (1995) J Electrochem Soc 142:1097Google Scholar
  25. 25.
    Pałys BJ, Skompska M, Jackowska K (1997) J Electroanal Chem 433:41CrossRefGoogle Scholar
  26. 26.
    Pickup NL, Shapiro JS, Wong DKY (1998) Anal Chim Acta 364:41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Mercedes Vázquez
    • 1
    • 3
  • Johan Bobacka
    • 1
  • Minna Luostarinen
    • 2
  • Kari Rissanen
    • 2
  • Andrzej Lewenstam
    • 1
  • Ari Ivaska
    • 1
  1. 1.Process Chemistry Centre, Laboratory of Analytical ChemistryÅbo Akademi UniversityÅbo-TurkuFinland
  2. 2.Nanoscience Center, Department of ChemistryUniversity of JyväskyläJyväskyläFinland
  3. 3.Graduate School of Materials Research (GSMR)

Personalised recommendations