Journal of Solid State Electrochemistry

, Volume 9, Issue 3, pp 132–137

Studying lithium intercalation into graphite particles via in situ Raman spectroscopy and confocal microscopy

  • S. Migge
  • G. Sandmann
  • D. Rahner
  • H. Dietz
  • W. Plieth
Original Paper


The electrochemical intercalation of lithium into single graphite particles was studied in situ using Raman microscopy combined with confocal microscopy. The degree of intercalation during cycling was obtained from changes in the Raman bands of carbon. Confocal microscopy was used to image the graphite electrode in order to monitor the intercalation into single graphite particles. An industrial button cell was modified such that Raman spectra and microscopic images of the back side of the negative electrode could be taken through a window in the cup of the cell. The liquid electrolyte consisted of a 1:1 mixture of ethylenecarbonate/dimethylcarbonate (EC/DMC) with 1 M LiPF6. The spectroscopy and microscopy showed that lithium does not intercalate into the graphite in a homogeneous manner. Inhomogeneous lithium intercalation was even observed in single graphite particles.


Lithium batteries Raman spectroscopy Confocal microscopy Intercalation Carbon particles 


  1. 1.
    Aurbach D, Markovsky B, Shechter A, Ein-Eli Y (1996) J Electrochem Soc 143:3809Google Scholar
  2. 2.
    Tokumitsu K, Mabuchi A, Fujimoto H, Kasuh T (1996) Eighth Int Meeting on Lithium Batteries, Nagoya, Japan, 16–21 June 1996, Extended Abstracts, p 212Google Scholar
  3. 3.
    Yun M, Moon S, Doh C, Lee K (1995) Synthetic Met 71:1761CrossRefGoogle Scholar
  4. 4.
    Besenhard JO, Winter M, Lutter W (1995) J Power Sources 54:28CrossRefGoogle Scholar
  5. 5.
    Ogumi Z, Inaba M (1998) Bull Chem Soc Jpn 71:521.Google Scholar
  6. 6.
    Migge S (1999) Dissertation. Fakultaet fuer Mathematik und Naturwissenschaften, Technische Universitaet Dresden, GermanyGoogle Scholar
  7. 7.
    Migge S, Sandmann G, Plieth W (2000) Annual Meeting of the Deutsche Bunsengesellschaft fuer Physikalische Chemie, “Electrochemical energy storage and transformation”, Wuerzburg, GermanyGoogle Scholar
  8. 8.
    Irish DE, Deng Z, Odziemkowski M (1995) J Power Sources 54:28CrossRefGoogle Scholar
  9. 9.
    Cazzanelli E, Mariotto G, Decker F, Rosolen JM (1996) J Appl Phys 80:2442CrossRefGoogle Scholar
  10. 10.
    Inaba M, Yoshida H, Ogumi Z (1996) J Electrochem Soc 143:2572Google Scholar
  11. 11.
    Rey I, Lasségues JC, Baudry P, Majestre H (1998) Electrochim Acta 43:1539CrossRefGoogle Scholar
  12. 12.
    Panitz JC, Novák P, Haas G (1999) Appl Spectrosc 53:1188CrossRefGoogle Scholar
  13. 13.
    Panitz JC, Joho F, Novák P (2001) Appl Spectrosc 55:1131CrossRefGoogle Scholar
  14. 14.
    Nemanich RJ, Lucovsky G, Solin SA (1977) Solid State Commun 23:117CrossRefGoogle Scholar
  15. 15.
    Inaba M, Yoshida H, Ogumi Z, Abe T, Mizutani Y, Asano M (1995) J Electrochem Soc 142:20Google Scholar
  16. 16.
    Tarascon JM, Guyomard D (1993) Electrochim Acta 38:1221CrossRefGoogle Scholar
  17. 17.
    Bittihn R, Herr R, Hoge D (1993) J Power Sources 43:223CrossRefGoogle Scholar
  18. 18.
    Sokin SA (1990) In: Zabel IH, Solin SA (eds) Graphite intercalation compounds. Springer, Berlin Heidelberg New York, p 181Google Scholar
  19. 19.
    Dresselhaus MS, Dresselhaus G (1981) Adv Phys 30:139Google Scholar
  20. 20.
    Huang W, Frech R (1998) J Electrochem Soc 145:765Google Scholar
  21. 21.
    Tran TD, Kinoshita K (1995) J Electroanal Chem 386:221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S. Migge
    • 1
  • G. Sandmann
    • 1
  • D. Rahner
    • 1
  • H. Dietz
    • 1
  • W. Plieth
    • 1
  1. 1.Institute of Physical Chemistry and ElectrochemistryTechnische Universität DresdenDresdenGermany

Personalised recommendations