Advertisement

Journal of Solid State Electrochemistry

, Volume 9, Issue 1, pp 43–54 | Cite as

Oxidation of phenol on RuO2–TiO2/Ti anodes

  • V. V. PanićEmail author
  • A. B. Dekanski
  • T. R. Vidaković
  • V. B. Mišković-Stanković
  • B. Ž. Javanović
  • B. Ž. Nikolić
Original Paper

Abstract

The oxidation of phenol on the RuO2–TiO2/Ti electrode has been studied by cyclic voltammetry, polarization measurements, electrochemical impedance spectroscopy and potentiostatic transients in H2SO4 and NaCl aqueous solutions. A reaction path with polymerization as the main reaction and side reactions after the initial step, similar to the reaction path on other electrode materials, is suggested. The formation of a phenoxy radical in a diffusion-controlled irreversible process is the initial step. The polymerization of phenoxy radicals leads to the formation of porous polyoxyphenylene film, strongly adherent to the electrode surface. The cyclic voltammetry measurements indicate side products, which could be, according to the literature, of quinone-like structure. Polyoxyphenylene film inhibits further oxidation of phenol, although complete electrode passivation was not observed. The presence of polyoxyphenylene film does not influence the pseudocapacitive behaviour of the electrode to a great extent, since the polyoxyphenylene film covers dominantly the coating surface, while active sites placed within coating cracks remain uncovered. The film seems to be permeable for hydrogen ions and water molecules.

Keywords

Electrochemical impedance spectroscopy Electrooxidation of phenol Phenol polymerization RuO2–TiO2/Ti electrode 

Notes

Acknowledgements

The research was financially supported by the Ministry of Science, Technology and Development, Republic of Serbia, project no. 2-1230.

References

  1. 1.
    Al-Maznai H, Conway B (2001) J Serb Chem Soc 66:765Google Scholar
  2. 2.
    Bruno F, Pham MC, Dubois JE (1977) Electrochim Acta 22:451CrossRefGoogle Scholar
  3. 3.
    Glarum SH, Marshall JH (1985) J Electrochem Soc 132:2939Google Scholar
  4. 4.
    Glarum SH, Mashall JH, Hellman MY, Taylor GN (1987) J Electrochem Soc 134:81Google Scholar
  5. 5.
    Lapuente R, Cases F, Garcés P, Marallón E, Vázquez JL (1998) J Electroanal Chem 451:163CrossRefGoogle Scholar
  6. 6.
    Iotov PI, Kalcheva SV (1998) J Electroanal Chem 442:19CrossRefGoogle Scholar
  7. 7.
    Ureta-Zañatu MS, Bustos P, Diez MC, Mora ML, Gutiérez C (2001) Electrochim Acta 46:2545CrossRefGoogle Scholar
  8. 8.
    Jedral W, Merica SG, Bunce NJ (1999) Electrochem Comm 1:108CrossRefGoogle Scholar
  9. 9.
    Conway B, Ayranci E, Al-Maznai H (2001) Electrochim Acta 47:705CrossRefGoogle Scholar
  10. 10.
    Sistiaga M, Pierna AR, Marzo FF, Altube A, Lorenzo A (1998) Appl Surf Sci 133:124CrossRefGoogle Scholar
  11. 11.
    Feng YJ, Li XY (2003) Water Res 37:2399CrossRefPubMedGoogle Scholar
  12. 12.
    Iniesta J, Expósito E, González-García J, Montiel V, Aldaz A (2002) J Electrochem Soc 149:D57CrossRefGoogle Scholar
  13. 13.
    Stucki S, Kötz R, Carcer B, Suter W (1991) J Appl Electrochem 21:99Google Scholar
  14. 14.
    Comninellis C, Nerini A (1995) J Appl Electrochem 25:23Google Scholar
  15. 15.
    Comninellis C (1994) Electrochim Acta 39:1857CrossRefGoogle Scholar
  16. 16.
    Comninellis C, Pulgarin C (1993) J Appl Electrochem 23:108Google Scholar
  17. 17.
    Iniesta J, Michaud PA, Panizza M, Cerisola G, Aldaz A, Comninellis C (2001) Electrochim Acta 46:3573CrossRefGoogle Scholar
  18. 18.
    Hagans PL, Natishan PM, Stoner BR, O’Grady WE (2001) J Electrochem Soc 148:E298CrossRefGoogle Scholar
  19. 19.
    Ureta-Zañatu MS, Bustos P, Berríos C, Diez MC, Mora ML, Gutiérez C (2002) Electrochim Acta 47:2399CrossRefGoogle Scholar
  20. 20.
    Boudenne JL, Cerclier O, Galéa J, Van der Vlist E (1996) Appl Catal A 143:185CrossRefGoogle Scholar
  21. 21.
    Gattrell M, Kirk D (1992) J Electrochem Soc 139:2736Google Scholar
  22. 22.
    Musiani M, Pagura C, Mengoli G (1985) Electrochim Acta 30:501CrossRefGoogle Scholar
  23. 23.
    Mengoli G, Musiani M (1987) J Electrochem Soc 134:643CGoogle Scholar
  24. 24.
    Panić V, Dekanski A, Milonjić S, Atanasoski R, Nikolić B (1999) Colloids Surf A 157:269Google Scholar
  25. 25.
    Panić V, Dekanski A, Milonjić S, Atanasoski R, Nikolić B (2000) Electrochim Acta 46:415CrossRefGoogle Scholar
  26. 26.
    Panić V, Dekanski A, Wang G, Fedoroff M, Milonjić S, Nikolić B (2003) J Colloid Interface Sci 263:68CrossRefPubMedGoogle Scholar
  27. 27.
    Boucamp B (1989) Equivalent circuit (EQUIVCRTPAS) user’s manual. University of Twente, Enschede, The NetherlandsGoogle Scholar
  28. 28.
    Thompson MJ, Zeegers PJ (1989) Tetrahedron 45:191CrossRefGoogle Scholar
  29. 29.
    Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Electrochim Acta 49:313CrossRefGoogle Scholar
  30. 30.
    Conway B (1999) Electrochemical supercapacitors—Scientific fundamentals and technological applications. Plenum, New YorkGoogle Scholar
  31. 31.
    Ardizzone S, Fregonara G, Trasatti S (1990) Electrochim Acta 35:263CrossRefGoogle Scholar
  32. 32.
    Chizmadzev Y, Chirkov Y (1983) In: Yeager E, Bockris J, Conway B, Sarangapani S (eds) Comprehensive treatise of electrochemistry, vol 6. Plenum, New York, pp 317–393Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • V. V. Panić
    • 1
    Email author
  • A. B. Dekanski
    • 1
  • T. R. Vidaković
    • 2
  • V. B. Mišković-Stanković
    • 2
  • B. Ž. Javanović
    • 2
  • B. Ž. Nikolić
    • 2
  1. 1.Department of ElectrochemistryICTMBelgradeSerbia and Montenegro
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia and Montenegro

Personalised recommendations