Journal of Solid State Electrochemistry

, Volume 9, Issue 1, pp 21–29

Effect of film thickness on the electro-reduction of molecular oxygen on electropolymerized cobalt tetra-aminophthalocyanine films

  • Jorge Pavez
  • Maritza Páez
  • Armelle Ringuedé
  • Fethi Bedioui
  • José H. Zagal
Original Paper

Abstract

We studied the electrocatalytic activity of cobalt tetra-aminophthalocyanine (CoTAPc) for the reduction of molecular oxygen (O2) on adsorbed monomeric and on electropolymerized films of different thicknesses on glassy carbon (GC) electrode. The polymeric films, denoted poly-CoTAPc, were first characterized by electrochemical impedance spectroscopy and it appears that the types of phenomena revealed to be occurring depend less on the film thickness in basic than in acid media. For O2 reduction, the results showed that poly-CoTAPc is more active than the monomeric CoTAPc adsorbed on GC. Indeed, rotating ring-disk electrode data showed that polymeric CoTAPc promotes the four-electron reduction of O2 to water in parallel to a two-electron reduction to give peroxide. On monomeric and thin films of poly-CoTAPc, a two-electron reduction mechanism predominates. In basic media the activity increases very slightly with thickness, whereas in acid media this increase is more pronounced. This parallels the observed behavior revealed by electrochemical impedance spectroscopy.

Keywords

Polymerized cobalt tetra-aminophthalocyanine Oxygen reduction Film thickness Electrochemical impedance spectroscopy Electrocatalysis 

References

  1. 1.
    Lever APB (1999) J Porphyrins Phthalocyanines 3:488CrossRefGoogle Scholar
  2. 2.
    Zagal JH (1992) Coord Chem Rev 119:89Google Scholar
  3. 3.
    Tarasevich MR, Sadkowki A, Yeager E (1983) Oxygen electrochemistry. In: Conway B, Bockris JO’M, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise of electrochemistry, vol. 7. Plenum, New York, p301Google Scholar
  4. 4.
    Schiffrin DEJ (1983) The electrochemistry of oxygen. In Pletcher D (ed) Electrochemistry, specialist periodical report, vol 8. Royal Society of Chemistry, London, p126Google Scholar
  5. 5.
    Kinoshita K (1990) Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  6. 6.
    Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis.Wiley-VCH, New York, p197Google Scholar
  7. 7.
    Zagal JH (2003) Macrocycles. In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cell, fundamentals, technology and applications, vol 2, chapter 37. Wiley, New York p544Google Scholar
  8. 8.
    Osaka T, Kaoni K, Hirabashi T, Kakamura S (1986) Bull Chem Soc Jpn 59:2217Google Scholar
  9. 9.
    Ikeda O, Itoh S, Yoneyama H (1988) Bull Chem Soc Jpn 61:1428Google Scholar
  10. 10.
    Kobayashi N, Sudo K, Osa T (1990) Bull Chem Soc Jpn 63:571Google Scholar
  11. 11.
    Coutanceu C, Crouigneau P, Léger JM, Lamy C (1994) J Electroanal Chem 379:389Google Scholar
  12. 12.
    Bilouil A, Contamin O, Scarbeck G, Savy M, Palys B, Riga J, Verbist J (1994) J Electroanal Chem 365:239CrossRefGoogle Scholar
  13. 13.
    Tse YH, Jya P, Lam H, Zhang JJ, Pietro J, Lever ABP (1997) J Porphyrins Phthalocyanines 1:3CrossRefGoogle Scholar
  14. 14.
    Collman JP, Anson FC, Denisevich P, Konai Y, Morrocco M, Koval C (1980) J Am Chem Soc 102:6027Google Scholar
  15. 15.
    Durand RR, Bencosme CS, Collman JP, Anson FC (1983) J Am Chem Soc 105:2710Google Scholar
  16. 16.
    Yuasa M, Nishihara R, Shi C, Anson FC (2001) Polym Adv Technol 12:266CrossRefGoogle Scholar
  17. 17.
    Shi C, Anson FC (1992) Inorg Chem 31:5078Google Scholar
  18. 18.
    Steiger B, Shi C, Anson FC (1993) Inorg Chem 32:2107Google Scholar
  19. 19.
    Steiger B, Anson FC (1994) Inorg Chem 33:5767Google Scholar
  20. 20.
    Shi C, Anson FC (1995) Inorg Chem 34:4554Google Scholar
  21. 21.
    Araki K (2002) Polymetallic porphyrins as redox catalysts. 2nd Int Conf on Porphyrins and Phthalocyanines, Kyoto, Japan, June 30,2002, abss-35, p87Google Scholar
  22. 22.
    Bettelheim A, White BA, Murray RW (1987) J Electroanal Chem 217:271CrossRefGoogle Scholar
  23. 23.
    Bettelheim A, White BA, Raybuck SA, Murray RW (1987) Inorg Chem 26:1009Google Scholar
  24. 24.
    Li H, Guarr TF (1989) J Chem Soc Chem Commun 832Google Scholar
  25. 25.
    Qi X, Baldwin RP (1996) J Electrochem Soc 143:1283Google Scholar
  26. 26.
    Griveau S, Pavez J, Zagal JH, Bedioui F (2001) J Electroanal Chem 497:75CrossRefGoogle Scholar
  27. 27.
    Fu G, Jayaraj YF, Lever ABP (1990) Inorg Chem 29:4090Google Scholar
  28. 28.
    Irvine JTS, Eggins BR, Grimshaw J (1989) J Electroanal Chem 271:161CrossRefGoogle Scholar
  29. 29.
    Zagal JH, Gulppi M, Caro CA, Cardenas-Jirón G (1999) Electrochem Commun 1:389CrossRefGoogle Scholar
  30. 30.
    Walter GW (1986) Corrosion Sci 26:689Google Scholar
  31. 31.
    Levich VG (1962) Physicochemical Hydrodynamics. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar
  32. 32.
    Zagal JH, Bindra P, Yeager E (1980) J Electrochem Soc 127:1506Google Scholar
  33. 33.
    Ramirez G, Trollund E, Isaacs M, Armijo F, Zagal JH, Costamagna J, Aguirre MJ (2002) Electroanalysis 14: 540CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Jorge Pavez
    • 1
    • 3
  • Maritza Páez
    • 1
  • Armelle Ringuedé
    • 2
  • Fethi Bedioui
    • 2
    • 4
  • José H. Zagal
    • 1
  1. 1.Departamento de Química de los Materiales, Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Laboratoire d’Electrochimie et Chimie Analytique, UMR CNRS-ENSCP 7575Ecole Nationale Supérieure de Chimie de ParisParis Cedex 05France
  3. 3.Departamento de Fisica, Facultad de CienciaUniversidad de Santiago de Chile and Center for Advanced Interdisciplinary Research in Materials CIMATSantiagoChile
  4. 4.Laboratoire de Pharmacologie Chimique et génétique, FRE CNRS-ENSCP no. 2463, U INSERM 640Ecole Nationale Supérieure de Chimie de ParisParis Cedex 05France

Personalised recommendations