Journal of Solid State Electrochemistry

, Volume 8, Issue 11, pp 923–927

Silver incorporation into cathodes for solid oxide fuel cells operating at intermediate temperature

  • Sven Uhlenbruck
  • Frank Tietz
  • Vincent Haanappel
  • Doris Sebold
  • Hans-Peter Buchkremer
  • Detlev Stöver
Original Paper

Abstract

Silver (Ag) at 0.1–2.0 wt% was incorporated into cathodes for solid oxide fuel cells as a catalyst for oxygen reduction. A novel processing route for Ag incorporation ensuring a very homogeneous Ag ion distribution is presented. From the results of X-ray powder diffraction it can be concluded that the La0.65Sr0.3MnO3−δ perovskite phase is already formed at 900 °C.

The solubility of Ag in the crystal lattice in this type of perovskite was below 1 wt%. The electrochemical tests of these materials show that there is only a slight catalytic effect of Ag. Scanning electron microscopy reveals a low mechanical contact of the cathode grains to the electrolyte due to the low cathode sintering temperature that was chosen.

Keywords

Solid oxide fuel cell Cathode Silver 

References

  1. 1.
    Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) Solid State Ionics 146 203Google Scholar
  2. 2.
    Choudhary VR, Uphade BS, Pataskar SG (1999) Fuel 78:919CrossRefGoogle Scholar
  3. 3.
    Tikhonovich VN, Kharton VV, Naumovich EN, Savitsky AA (1998) Solid State Ionics 106:197CrossRefGoogle Scholar
  4. 4.
    Rutenbeck D, Haanappel VAC, Mai A, Uhlenbruck S, Tietz F, Vinke IC, Stöver D (2003) Noble metals in SOFC cathodes: processing and electrochemical perfomance. In: Singhal SC, Dokiya M (eds) 8th Int Symp of Solid Oxide Fuel Cells (SOFC-VIII), vol. 2003–07. The Electrochemical Society, Pennington, N.J., USA, 2003, pp 615–623Google Scholar
  5. 5.
    Pechini MP (1967) USA Patent No. 3,330,697Google Scholar
  6. 6.
    Stochniol G, Gupta A, Naoumidis A, Stöver D (1997) La0.75Sr0.2Mn0.9Co0.1O3 as cathode material for SOFC. In: Stimming U., Singhal SC, Tagawa H, Lehnert W (eds), 7th Int Symp of Solid Oxide Fuel Cells (SOFC-V), vol. 97–40. The Electrochemical Society, Pennington, N.J., USA, pp 888–896Google Scholar
  7. 7.
    Meulenberg WA, Menzler NH, Buchkremer HP, Stöver D (2002) Manufacturing routes and state-of-the-art of the planar Jülich anode supported concept for solid oxide fuel cells. In: Manthiram A, Kumta PN, Sundaram SK, Ceder G (eds), Ceram Trans: Materials for Electrochemical Energy Conversion and Storage, vol 127. The American Ceramic Society, Westerville, Ohio, USA, pp 99–108Google Scholar
  8. 8.
    Simwonis D, Naoumidis A, Dias FJ, Linke J, Moropoulou A (1997) J Mater Res 12:1508Google Scholar
  9. 9.
    Hassan AAE, Menzler NH, Blass G, Ali ME, Buchkremer HP, Stöver D (2002) Adv Eng Mater 4:125CrossRefGoogle Scholar
  10. 10.
    de Haart LGJ, Mayer K, Stimming U, Vinke IC (1998) J Power Sources 71:302CrossRefGoogle Scholar
  11. 11.
    Stöver D., Buchkremer HP, Tietz F, Menzler NH (2002) Trends in Processing of SOFC Components. J. Huijsmans (ed) Proc of the 5th European Solid Oxide Fuel Cell Forum, vol. 1. European Fuel Cell Forum, Lucerne, Switzerland, pp 1–9Google Scholar
  12. 12.
    Ahmad-Khanlou A, Tietz F, Vinke IC, Stöver D (2001) Electrochemical and microstructural study of SOFC cathodes based on La0.65Sr0.3MnO3 and Pr0.65Sr0.3MnO3. In: Yokokawa H, Singhal SC (eds), Proc 7th Int Symp of Solid Oxide Fuel Cells (SOFC-VII). The Electrochemical Society, Pennington, N.J., USA, pp 476–484Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Sven Uhlenbruck
    • 1
  • Frank Tietz
    • 1
  • Vincent Haanappel
    • 1
  • Doris Sebold
    • 1
  • Hans-Peter Buchkremer
    • 1
  • Detlev Stöver
    • 1
  1. 1.Forschungszentrum Jülich GmbHInstitute for Materials and Processes in Energy SystemsJülichGermany

Personalised recommendations