Journal of Solid State Electrochemistry

, Volume 8, Issue 9, pp 618–625 | Cite as

Transport in ceria electrolytes modified with sintering aids: effects on oxygen reduction kinetics

  • Duncan P. FaggEmail author
  • Vladislav V. Kharton
  • Jorge R. Frade
Original Paper


Small (2 mol%) cobalt oxide additions to ceria-gadolinia (CGO) materials considerably improve sinterability, making it possible to obtain ceramics with 95–99% density and sub-micrometre grain sizes at 1,170–1,370 K. The addition of Co causes a significant shift of the electrolytic domain to lower pO2. This modification to the minor electronic conductivity of the electrolyte material has influence on the cathodic oxygen reduction reaction. The impedance technique is shown to provide information not only about polarisation resistance, but also about the active electrode area from analysis of the current constriction resistance. It is demonstrated that this current constriction resistance can be related to the minor electronic contributions to total conductivity in these materials. A simple imbedded grid approach gives control of the contact area allowing the properties of the electrolyte materials to be studied. A much lower polarisation resistance for the Co-containing CGO electrolyte is observed, which can be clearly attributed to an increased three-phase reaction area in the Co-containing material, as a consequence of elevated p-type conductivity.


Gadolinia-doped ceria Electrolyte Sintering aids Oxygen reduction kinetics Impedance spectroscopy 



This work was supported by the FCT, Portugal (PRAXIS program and the contracts SFRH/BPD/3529/2000 and POCTI/CTM/39381/2001).


  1. 1.
    Steele BCH (2000) Solid State Ionics 129:95CrossRefGoogle Scholar
  2. 2.
    Huijsmans JPP (2001) Curr Opin Solid State Mater Sci 5:317CrossRefGoogle Scholar
  3. 3.
    Yamamoto O (2000) Electrochim Acta 45:2423Google Scholar
  4. 4.
    Christie GM, van Berkel FPF (1996) Solid State Ionics 83:17CrossRefGoogle Scholar
  5. 5.
    Hong SJ, Mehta K, Virkar AV (1998) J Electrochem Soc 145:638Google Scholar
  6. 6.
    Kleinlogel C, Gaukler LJ (1999) Nano sized ceria solid solutions for intermediate temperature solid oxide fuel cells. In: Singhal SC and Dokiya M (eds) 6th Int Symp of Solid Oxide Fuel Cells (SOFC VI) PV99–19. The Electrochemical Society, Pennington, N.J., p 225Google Scholar
  7. 7.
    Kleinlogel C, Gauckler LJ (2000) Solid State Ionics 135:567CrossRefGoogle Scholar
  8. 8.
    Tianshu Z, Hing P, Huang H, Kilner J (2001) Mater Sci Eng B 83:235CrossRefGoogle Scholar
  9. 9.
    Fagg DP, Kharton VV, Frade JR (2002) J Electroceram 9:199CrossRefGoogle Scholar
  10. 10.
    Fagg DP, Abrantes JCC, Coll DP, Nùñez P, Kharton VV, Frade JR (2003) Electrochim Acta 48:1023Google Scholar
  11. 11.
    Kharton VV, Naumovich EN, Vecher AA (1999) J Solid State Electrochem 3:61CrossRefGoogle Scholar
  12. 12.
    Steele BCH, Hori KM, Uchino S (2000) Solid State Ionics 135:445CrossRefGoogle Scholar
  13. 13.
    Bohac P, Orliukas A, Gauckler LJ (1995) Lowering of the cathode overpotential of SOFC by electrolyte doping. In: Waser R (ed) Proc Int Conf “Electroceramics IV”, vol. 2. Augustinus Buchhandlung, Aachen, p.771Google Scholar
  14. 14.
    Thampi KR, McEvoy AJ, Van herle J (1995) J Electrochem Soc 142:506Google Scholar
  15. 15.
    Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup V, Carneiro A, Marques FMB, Frade JR (2001) J Mater Sci 36:1105CrossRefGoogle Scholar
  16. 16.
    Navarro LM, Marques FMB, Frade JR (1997) J Electrochem Soc 144:267Google Scholar
  17. 17.
    Mather GC, Fagg DP, A.Ringuedé A, Frade JR (2001) Fuel Cells 1:1CrossRefGoogle Scholar
  18. 18.
    Gorelov VP (1988) Elektrokhimiya 24:1380 (in Russian)Google Scholar
  19. 19.
    Sasaki K, Wurth J-P, Gschwend R, Gödickemeier M, Gauckler LJ (1996) J Electrochem Soc 143:530Google Scholar
  20. 20.
    Bieberle A, Meier LP, Gaukler LJ (2001) J Electrochem Soc 148(6):A646CrossRefGoogle Scholar
  21. 21.
    Gharbage B, Marques FMB, Frade JR (2000) Solid State Ionics 136/137:933Google Scholar
  22. 22.
    Lauret H, Hammou A (1996) J Eur Ceram Soc 16:447CrossRefGoogle Scholar
  23. 23.
    Fleig J, Pham P, Sztulzaft P, Maier J (1998) Solid State Ionics 113:739CrossRefGoogle Scholar
  24. 24.
    Fleig J, Maier J (1997) The influence of inhomogeneous potential distributions on the electrolyte resistance in solid oxide fuel cells. In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) Proc 5th Int Symp on Solid Oxide Fuel Cells, PV 97–40. Aachen, Germany, p 1374Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Duncan P. Fagg
    • 1
    Email author
  • Vladislav V. Kharton
    • 1
  • Jorge R. Frade
    • 1
  1. 1.Department of Ceramics and Glass Engineering, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations