Advertisement

Journal of Solid State Electrochemistry

, Volume 8, Issue 8, pp 558–564 | Cite as

Electrochemical and structural study of LiCoPO4-based electrodes

  • Natalia N. BramnikEmail author
  • Kirill G. Bramnik
  • Thorsten Buhrmester
  • Carsten Baehtz
  • Helmut Ehrenberg
  • Hartmut Fuess
Original Paper

Abstract

LiCoPO4 samples were synthesized by two different techniques (high-temperature solid-state reaction and lower-temperature synthesis using NH4CoPO4·H2O as precursor) and tested as cathode materials for 5-V lithium batteries. An irreversible lithium deinsertion was observed for the high-temperature sample. In contrast, the application of lower-temperature synthesis led to a significant improvement of the lithium storage reversibility. Different delithiation mechanisms in LiCoPO4 were found for the samples obtained by different synthetic techniques. The nature of capacity fading during cycling of the cells is discussed.

Keywords

Rechargeable batteries Intercalation Lithium Olivine-type structure Cathode 

Notes

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the frame of SFB 595. The authors thank Andreas Adams for providing SEM images of the samples.

References

  1. 1.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mat Res Bull 15:783CrossRefGoogle Scholar
  2. 2.
    Reimers JN, Dahn JR (1992) J Electrochem Soc 139:2091Google Scholar
  3. 3.
    Tarascon JM, Guyomard D (1993) Electrochim Acta 38:1221CrossRefGoogle Scholar
  4. 4.
    Caurant D, Baffier N, Garsia, B, Pereira-Ramos JP (1996) Solid State Ionics 91:45CrossRefGoogle Scholar
  5. 5.
    Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1995) Solid State Ionics 81:167CrossRefGoogle Scholar
  6. 6.
    Alcántara R, Jaraba M, Lavela P, Tirado JL (2002) Electrochim Acta 47:1829CrossRefGoogle Scholar
  7. 7.
    Hong KJ, Sun YK (2002) J Power Sources 109:427CrossRefGoogle Scholar
  8. 8.
    Fey GT-K, Li W, Dahn JR (1994) J Electrochem Soc 141:2279Google Scholar
  9. 9.
    Kawai H, Nagata M, Tabuchi M, Tukamoto H, West AR (1998) Chem Mater 10:3266CrossRefGoogle Scholar
  10. 10.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188Google Scholar
  11. 11.
    Amine K, Yazuda H, Yamachi M (2000) Electrochem Solid-State Lett 3:178Google Scholar
  12. 12.
    Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A J (2001) J Power Sources 97–98:430Google Scholar
  13. 13.
    Lloris JM, Pérez Vicente C, Tirado JL (2002) Electrochem Solid-State Lett 5:A234-A237Google Scholar
  14. 14.
    Knapp M, Joco V, Baehtz C, Brecht HH, Berghaeuser A, Ehrenberg H, von Seggern H, Fuess H (2003) Nucl Instrum Methods (submitted)Google Scholar
  15. 15.
    Roisnel T, Rodriguez-Carvajal J (2002), WinPLOTR: a graphical tool for powder diffractionGoogle Scholar
  16. 16.
    Thompson AH (1979) J Electrochem Soc 126:608Google Scholar
  17. 17.
    Kubel F (1994) Z Kristallgr 209:755Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Natalia N. Bramnik
    • 1
    Email author
  • Kirill G. Bramnik
    • 1
  • Thorsten Buhrmester
    • 1
  • Carsten Baehtz
    • 1
  • Helmut Ehrenberg
    • 1
  • Hartmut Fuess
    • 1
  1. 1.Department of Materials ScienceDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations