Advertisement

Journal of Solid State Electrochemistry

, Volume 8, Issue 4, pp 218–223 | Cite as

Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents

  • S. FrangerEmail author
  • P. Berthet
  • J. Berthon
Original Paper

Abstract

Ultrafine magnetite particles are prepared through an electrochemical process, at room temperature, from an iron-based electrode immersed in an alkaline aqueous medium containing complexing compounds. XRD and chemical analysis indicate that the product is pure magnetite, Fe3O4. The size and morphology of the particles are studied by SEM. The magnetite nanoparticles present a magnetoresistance of almost 3%, at 300 K, under a magnetic field of 1 T. A reactive mechanism for the electrochemical process is proposed.

Keywords

Inorganic electrosynthesis Iron oxide Iron(III) oxyhydroxide Magnetite Nanoparticles 

Notes

Acknowledgements

The authors are grateful to Mr. Christian Haut (ICMMO, Université Paris Sud – XI), who provided the SEM micrographs of magnetite.

References

  1. 1.
    Elmore WC (1938) Phys Rev 54:309CrossRefGoogle Scholar
  2. 2.
    Massart R (1980) CR Acad Sci Paris 291C:1Google Scholar
  3. 3.
    Tronc E, Jolivet J-P, Massart R (1982) Mater Res Bull 17:1365CrossRefGoogle Scholar
  4. 4.
    Jolivet J-P, Massart R, Fruchart J-M (1983) Nouv J Chim 7:325Google Scholar
  5. 5.
    Jolivet J-P, Belleville P, Tronc E, Livage J (1992) Clays Clay Minerals 40:531Google Scholar
  6. 6.
    Tronc E, Belleville P, Jolivet J-P, Livage J (1992) Langmuir 8:313Google Scholar
  7. 7.
    Visalakshi G, Venkateswaran G, Kulshreshtha SK, Moorty PN (1993) Mater Res Bull 28:829CrossRefGoogle Scholar
  8. 8.
    Siles-Dotor MG, Morales A, Benaissa M, Cabral-Prieto A (1997) Nanostruct Mater 8:657Google Scholar
  9. 9.
    Darken LS, Gurry RW (1946) J Am Chem Soc 68:798Google Scholar
  10. 10.
    Von Osterhont (1975) Magnetic oxides. Wiley-Interscience, New YorkGoogle Scholar
  11. 11.
    Konishi Y, Kawamura T, Asai S (1993) Ind Eng Chem Res 32:2888Google Scholar
  12. 12.
    Yitai Q, Yi X, Chuan H, Jing L, Zuyao C (1994) Mater Res Bull 29:953CrossRefGoogle Scholar
  13. 13.
    Li Y, Liao H, Qian Y (1998) Mater Res Bull 33:841CrossRefGoogle Scholar
  14. 14.
    Chen D, Xu R (1998) Mater Res Bull 33:1015CrossRefGoogle Scholar
  15. 15.
    Bae DS, Hau KS, Cho SB, Choi SH (1998) Mater Lett 37:255CrossRefGoogle Scholar
  16. 16.
    Fan R, Chen XH, Gui Z, Liu L, Chen ZY (2001) Mater Res Bull 36:497CrossRefGoogle Scholar
  17. 17.
    Gabrielli C (1981) Identification of electrochemical processes by frequency response analysis. Solartron, FranceGoogle Scholar
  18. 18.
    MacDonald JR (1987) Impedance spectroscopy. Wiley-Interscience, New York, p 84Google Scholar
  19. 19.
    Petzold W, Petzold A (1958) Z Anal Chem 161:241Google Scholar
  20. 20.
    Riegel ER, Schwartz RD (1952) Anal Chem 14:1803Google Scholar
  21. 21.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley-Interscience, New York, p 656Google Scholar
  22. 22.
    Dordor P, Marquestant E, Villeneuve G (1980) Rev Phys Appl 15:1607Google Scholar
  23. 23.
    Pourbaix M (1963) Atlas d’équilibres électrochimiques. Gauthier-Villars, ParisGoogle Scholar
  24. 24.
    Brousse T, Bélanger D (2003) Electrochem Solid-State Lett 6:A244Google Scholar
  25. 25.
    Franger S, Bach S, Pereira-Ramos J-P, Baffier N (2000) Ionics 6:470Google Scholar
  26. 26.
    Franger S, Bach S, Farcy J, Pereira-Ramos J-P, Baffier N (2002) J Power Sources 109:262CrossRefGoogle Scholar
  27. 27.
    Pascal P (1963) Nouveau traité de chimie minérale, vol XVI. Masson, ParisGoogle Scholar
  28. 28.
    Michel A, Bénard J (1964) Chimie minérale. Masson, Paris, p 644Google Scholar
  29. 29.
    Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley-Interscience, New YorkGoogle Scholar
  30. 30.
    Sarrazin J, Verdaguer M (1998) Oxydoréduction. Ellipses, Paris, p 216Google Scholar
  31. 31.
    Wang L, Li J, Ding W, Zhou T, Liu B, Zhong W, Wu J, Du Y (1999) J Magn Magn Mater 207:111CrossRefGoogle Scholar
  32. 32.
    Ziese M, Höhne R, Hong NH, Dienelt J, Zimmer K, Esquinazi P (2002) J Magn Magn Mater 242–245:450Google Scholar
  33. 33.
    Hsu J-H, Chen S-Y, Chang C-R (2002) J Magn Magn Mater 242–245:479Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Laboratoire de Physico-Chimie de l’Etat Solide, UMR CNRS 8648Université Paris XIOrsayFrance

Personalised recommendations