Advertisement

Journal of Solid State Electrochemistry

, Volume 7, Issue 7, pp 421–434 | Cite as

Electrochemical properties of diamond-like carbon electrodes prepared by the pulsed laser deposition method

  • Gunnar Nurk
  • Jaanus Eskusson
  • Raivo Jaaniso
  • Enn Lust
Original Paper

Abstract.

Diamond-like carbon electrodes (DLCEs) have been synthesized by the pulsed laser deposition method. The surface structure of the DLCEs has been studied by atomic force microscopy and the root-mean-square roughness has been established as Rms≥81 Å. Electrochemical impedance spectroscopy and cyclic voltammetry data show that DLCEs are nearly ideally polarizable in the potential region –0.4<E<1.1 V (vs. Ag|AgCl|sat. KCl in H2O) in 0.1 M NaF+H2O solution. Various equivalent circuits have been used for fitting the complex plane and Bode plots. A very good agreement between experimental and calculated Nyquist curves has been established if the charge transfer and double layer charging at the surface, intercalation of the H+ and (or) Na+ ions and solid phase diffusion inside the nanoparticle, as well as the effect of an insulating film at the surface (i.e. surrounding the nanoparticles), are taken into account.

Keywords.

Diamond-like carbon Electrochemical double layer Impedance Pulsed laser deposition 

Notes

Acknowledgements.

This work was supported partially by the Estonian Science Foundation under project nos. 4568 and 4204.

References

  1. 1.
    Pleskov YuV, Sakharova AYa, Krotova MD, Bouilov LL, Spitsyn BV (1987) J Electroanal Chem 228:19Google Scholar
  2. 2.
    Pleskov YuV, Evstefeeva YuE, Krotova MD, Elkin VV, Mazin VM, Mishuk VYa, Varin VP, Teremetskaya IG (1998) J Electroanal Chem 455:139Google Scholar
  3. 3.
    Janssen G, van Enckevort WJP, Wollenberg W, Giling LJ (1992) Diamond Relat Mater 1:789Google Scholar
  4. 4.
    Ball P (1996) Nature 381:116Google Scholar
  5. 5.
    van de Lagenmaat J, Vanmaekelbergh D, Valley JJ (1999) J Electroanal Chem 475:139Google Scholar
  6. 6.
    Tenne R, Patel K, Hashimoto K, Fujishima A (1993) J Electroanal Chem 347:409Google Scholar
  7. 7.
    Vinokur N, Miller B, Avyigal Y, Kalish R (1996) J Electrochem Soc 143:L238Google Scholar
  8. 8.
    Alhashem S, Chambers F, Stojek JW, Swain GM, Ramesham R (1995) Anal Chem 67:2812Google Scholar
  9. 9.
    Martin HB, Argoitia A, Landau U, Anderson AB, Angus JC (1996) J Electrochem Soc 144:L133Google Scholar
  10. 10.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer/Plenum, New York, p 1Google Scholar
  11. 11.
    Lust E, Nurk G, Jänes A, Arulepp M, Nigu P, Permann L, Möller P (2002) J Condens Matter Phys 2:1Google Scholar
  12. 12.
    Swain GM (1994) Adv Mater 6:388Google Scholar
  13. 13.
    Pleskov YuV, Mishuk VYa, Abaturov MA, Elkin VV, Krotova MD, Varin VP, Teremetskaya IG (1995) J Electroanal Chem 396:227Google Scholar
  14. 14.
    Pleskov YuV, Elkin VV, Abaturov MA, Krotova MD, Mishuk VYa, Varin VP, Teremetskaya IG (1996) J Electroanal Chem 413:105Google Scholar
  15. 15.
    Sakharova AYa, Pleskov YuV, Quarto FD, Piazza S, Sunseri C, Teremetskaya IG, Varin VP (1995) Russ J Electrochem 31:169Google Scholar
  16. 16.
    Sakharova AYa, Sevastyanov AE, Pleskov YuV, Teplitskaya GL, Surikov VV, Voloshin AA (1991) Elektrokhimiya 27:263Google Scholar
  17. 17.
    Kulish W (1999) Deposition of diamond-like superhard materials. Springer, Berlin Heidelberg New York, pp 1–186Google Scholar
  18. 18.
    Tabal M, Mérel P, Chaker M, El Khakani MA, Herbert EG, Lucas MB, O'Hern ME (1999) Surf Coating Technol 116:452Google Scholar
  19. 19.
    Tsui YY, Redmon DG (2000) Surf Coat Technol 126:96Google Scholar
  20. 20.
    Wei Q, Samkar J, Sharma AK, Yamagata Y, Narayan J (2001) J Vacuum Sci Technol A 19:311Google Scholar
  21. 21.
    Ebihara K, Nakamiya T, Ohshima T, Ikegami T, Aoqui S (2001) Diamond Relat Mater 10:900Google Scholar
  22. 22.
    Okada K, Aizawa T, Souda R, Komatsu S, Matsumoto S (2001) Diamond Relat Mater 10:1991Google Scholar
  23. 23.
    Wei Q, Sankar J, Nakayan J (2001) Surf Coat Technol 146–147:250Google Scholar
  24. 24.
    Tomcik B, Seng SC, Balakoisnan B, Lee J Y (2002) Diamond Relat Mater 11:1409Google Scholar
  25. 25.
    Robertson J (2002) Mater Sci Eng Res Rep 37:129Google Scholar
  26. 26.
    Gao J (2002) Int Mod Phys B 16:1024Google Scholar
  27. 27.
    Fedosenko S, Korzec D, Engemann J, Lyebyedyev D, Scheer H-C (2002) Thin Solid Films 406:275Google Scholar
  28. 28.
    Ferrari A C (2002) Diamond Relat Mater 11:1053Google Scholar
  29. 29.
    Zhang S, Hing P, Gao J (2002) Diamond Relat Mater 11:160Google Scholar
  30. 30.
    Rao TN, Tryk DA, Hashimoto K, Fujishima A (1999) J Electrochem Soc 196:680Google Scholar
  31. 31.
    Yagi I, Tsunosaki K, Tryk DA, Fujishima A (1999) Electrochem Solid State Lett 2:457Google Scholar
  32. 32.
    Jantson T, Avarmaa T, Mändar H, Eskusson J, Lõhmus A, Jaaniso R (2001) Proc SPIE 4318:36Google Scholar
  33. 33.
    Xiao RF (1995) Appl Phys Lett 67:1022Google Scholar
  34. 34.
    Xiao RF (1995) Appl Phys Lett 67:3117Google Scholar
  35. 35.
    Nurk G, Jänes A, Lust K, Lust E (2001) J Electroanal Chem 515:17Google Scholar
  36. 36.
    Lust E, Jänes A, Sammelselg V, Miidla P, Lust K (1998) Electrochim Acta 43:373Google Scholar
  37. 37.
    Lust E, Jänes A, Sammelselg V, Miidla P (2000) Electrochim Acta 46:185Google Scholar
  38. 38.
    Lust E, Jänes A, Lust K, Sammelselg V, Miidla P (1997) Electrochim Acta 42:2861Google Scholar
  39. 39.
    Leppävuori S, Levoska J, Vaara J, Kusmartseva O (1993) Mater Res Soc Symp Proc 285:557Google Scholar
  40. 40.
    Apakina VN, Karuzskii AL, Kogan MS, Kvit AV, Melnik NN, Mityagin YuA, Murzin VN, Orlikovsky AA, Perestoronin AV, Tkachenko SD, Volchkov NA (1997) Diamond Relat Mater 6:564Google Scholar
  41. 41.
    Knight DS, White WB (1989) J Mater Res 4:385Google Scholar
  42. 42.
    Diamant R, Jimenez E, Haro-Poniatowski E, Ponce L, Fernandez-Guasti M, Alonso JC (1999) Diamond Relat Mater 8:1277Google Scholar
  43. 43.
    MacDonald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley, New YorkGoogle Scholar
  44. 44.
    de Levie R (1990) J Electroanal Chem 281:1Google Scholar
  45. 45.
    MacDonald JR (1989) Solid State Ionics 13:147Google Scholar
  46. 46.
    Nyikos L, Pajkossy T (1986) Electrochim Acta 31:1347Google Scholar
  47. 47.
    Liu P, Wu H (1996) Solid State Ionics 92:91Google Scholar
  48. 48.
    Doyle M, Meyers JP, Newman J (2000) J Electrochem Soc 147:99Google Scholar
  49. 49.
    Meyers JP, Doyle M, Darling RM, Newman J (2000) J Electrochem Soc 147:293Google Scholar
  50. 50.
    Rammelt U, Reinhard G, Rammelt K (1984) J Electroanal Chem 180:327Google Scholar
  51. 51.
    Tanguy J, Mermilliod N, Hoclet M (1987) J Electrochem Soc 134:795Google Scholar
  52. 52.
    Paasch G, Micka K, Schwarzenberg M, Jobst K, Sawtschenko L (1992) Electrochim Acta 37:2453Google Scholar
  53. 53.
    Paasch G, Micka K, Gersdorf P (1993) Electrochim Acta 38:2653Google Scholar
  54. 54.
    Ho C, Raistrick D, Huggins R (1980) J Electrochem Soc 137:343Google Scholar
  55. 55.
    MacDonald JR (1992) Ann Biomed Eng 20:289Google Scholar
  56. 56.
    Jacobsen T, West K (1995) Electrochim Acta 40:233Google Scholar
  57. 57.
    Frumkin AN, Melik-Gaikazyan VI (1951) Dokl Akad Nauk SSSR 77:855Google Scholar
  58. 58.
    Melik-Gaikazyan VI (1952) Zh Fiz Khim 26:560Google Scholar
  59. 59.
    Randin J-P, Yeager E (1972) J Electroanal Chem 36:257Google Scholar
  60. 60.
    Gerisher H (1985) J Phys Chem 89:4249Google Scholar
  61. 61.
    Gerisher H, McInture R, Sherson D, Strock W (1987) J Phys Chem 91:1930Google Scholar
  62. 62.
    Daikhin LI, Kornyshev AA, Urbakh M (1997) Electrochim Acta 42:2853Google Scholar
  63. 63.
    Daikhin LI, Kornyshev AA, Urbakh M (1998) J Chem Phys 108:171Google Scholar

Copyright information

© Springer-Verlag  2003

Authors and Affiliations

  • Gunnar Nurk
    • 1
  • Jaanus Eskusson
    • 1
    • 2
  • Raivo Jaaniso
    • 2
  • Enn Lust
    • 1
  1. 1.Institute of Physical Chemistry, University of Tartu, 2 Jakobi Street, 51014 Tartu, Estonia
  2. 2.Institute of Physics, Estonian Academy of Sciences, 142 Riia Street, 51014 Tartu Estonia

Personalised recommendations