Journal of Solid State Electrochemistry

, Volume 7, Issue 7, pp 416–420

LaNi0.6Fe0.4O3 as a cathode contact material for solid oxide fuel cells

  • Rajendra N. Basu
  • Frank Tietz
  • Oliver Teller
  • Egbert Wessel
  • Hans Peter Buchkremer
  • Detlev Stöver
Original Paper

Abstract.

In solid oxide fuel cells (SOFCs) the interconnects electrically link air and fuel electrodes on either side to produce a practical electrical power output. The long-term stability of intermediate temperature (650–800 °C) SOFC operation strongly depends on the composition of the ferritic steel interconnection material and the steel/ceramic interface. During high-temperature operation the Cr-containing ferritic steel forms an oxide scale at its surface, thereby causing high ohmic electrical contact resistance when connected to the surface of an electronically conducting ceramic cathode material. In the long run, the vaporization of Cr species from these oxide scales also affects the cathode activity, eventually leading to cell deterioration. One way of overcoming the problem is to incorporate another electronically conducting ceramic compliant layer, commonly known as the contact layer, between the cathode and metallic interconnect. In this contribution, LaNi0.6Fe0.4O3 was tested as a cathode contact material. Its performance at 800 °C in the form of a ~50 µm thick film applied on two ferritic steel compositions was examined. After 600 h of testing, contact resistances of 60 and 160 mΩ cm2 were obtained. The different values are explained by the variation in steel composition.

Keywords.

Solid oxide fuel cell Ferritic steel interconnect Lanthanum nickel ferrite Contact resistance 

References

  1. 1.
    Minh NQ, Takahashi H (1995) Science and technology of ceramic fuel cells. Elsevier, New YorkGoogle Scholar
  2. 2.
    Badwal SPS, Foger K (1997) Mater Forum 21:187Google Scholar
  3. 3.
    Quadakkers WJ, Malkow T, Pirón-Abellán J, Flesch U, Shemet V, Singheiser L (2000) In: McEvoy AJ (ed) Proceedings of the European SOFC forum IV, vol. 2. Oberrohrdorf, Switzerland, pp 827–836Google Scholar
  4. 4.
    Honegger K, Plas A, Diethelm R, Glatz W (2001) In: Yokokawa H, Singhal SC (eds) Proceedings of the 7th international symposium on SOFC (SOFC-VII). (Electrochemical Society proceedings series, PV 2001-16) Electrochemical Society, Pennington, NJ, pp 803–810Google Scholar
  5. 5.
    Pirón-Abellán J, Shemet V, Tietz F, Singheiser L, Quadakkers WJ (2001) In: Yokokawa H, Singhal SC (eds) Proceedings of the 7th international symposium on SOFC (SOFC-VII). (Electrochemical Society proceedings series, PV 2001-16) Electrochemical Society, Pennington, NJ, pp 811–819Google Scholar
  6. 6.
    de Haart LGJ, Mayer K, Stimming U, Vinke IC (1998) J Power Sources 71:302Google Scholar
  7. 7.
    Hou PY, Huang K, Bakker WT (1999) In: Singhal SC, Dokiya M (eds) Proceedings of the 6th international symposium on SOFC (SOFC-VI). (Electrochemical Society proceedings series, PV 99-19) Electrochemical Society, Pennington, NJ, pp 737–748Google Scholar
  8. 8.
    Gindorf Ch, Singheiser L, Hilpert K (2001) Steel Res 72:528Google Scholar
  9. 9.
    Buchkremer HP, Diekmann U, de Haart LGJ, Kabs H, Stimming U, Stöver D (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) Proceedings of the 5th international symposium on solid oxide fuel cells (SOFC-V). (Electrochemical Society proceedings series, PV 97-18) Electrochemical Society, Pennington, NJ, pp 160–170Google Scholar
  10. 10.
    Teller O, Meulenberg WA, Tietz F, Wessel E, Quadakkers WJ (2001) In: Yokokawa H, Singhal SC (eds) Proceedings of the 7th international symposium on SOFC (SOFC-VII). (Electrochemical Society proceedings series, PV 2001-16) Electrochemical Society, Pennington, NJ, pp 895–903Google Scholar
  11. 11.
    Yoo Y, Dauga M (2001) In: Yokokawa H, Singhal SC (eds) Proceedings of the 7th international symposium on SOFC (SOFC-VII). (Electrochemical Society proceedings series, PV 2001-16) Electrochemical Society, Pennington, NJ, pp 837–846Google Scholar
  12. 12.
    Larring Y, Norby T (2000) J Electrochem Soc 147:3251Google Scholar
  13. 13.
    Quadakkers WJ, Greiner H, Hänsel M, Pattanaik A, Khanna AS, Malléner W (1996) Solid State Ionics 91:55Google Scholar
  14. 14.
    Ruckdäschel R, Henne R, Schiller G, Greiner H (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) Proceedings of the 5th international symposium on solid oxide fuel cells (SOFC-V). (Electrochemical Society proceedings series, PV 97-18) Electrochemical Society, Pennington, NJ, pp 1273–1282Google Scholar
  15. 15.
    Shiomitsu T, Kadowaki T, Ogawa T, Maruyama T (1995) In: Dokiya M, Yamamoto O, Tagawa H, Singhal SC (eds) Proceedings of the 4th international symposium on solid oxide fuel cells (SOFC-IV). (Electrochemical Society proceedings series, PV 95-1) Electrochemical Society, Pennington, NJ, pp 850–857Google Scholar
  16. 16.
    Chiba R, Yoshimura F, Sakurai Y (1999) In: Singhal SC, Dokiya M (eds) Proceedings of the 6th international symposium on SOFC (SOFC-VI). (Electrochemical Society proceedings series, PV 99-19) Electrochemical Society, Pennington, NJ, pp 453–462Google Scholar
  17. 17.
    Tietz F, Arul Raj I, Jungen W, Stöver D (2001) Acta Mater 49:803Google Scholar
  18. 18.
    Tietz, F (1999) In: Vincenzini P (ed) Proceedings of the 9th CIMTEC world ceramic congress and forum on new materials, vol 24 (Innovative materials in advanced energy technologies). Techna, Faenza, Italy, pp 61–70Google Scholar
  19. 19.
    Tietz F (1999) Ionics 5:129Google Scholar
  20. 20.
    Mineshige A, Inaba M, Yao T, Ogumi Z, Kikuchi K, Kawase M (1996) J Solid State Chem 121:423Google Scholar
  21. 21.
    Hammouche A, Siebert E, Hammou A (1989) Mater Res Bull 24:367Google Scholar
  22. 22.
    Malkow Th (1998) PhD thesis, RWTH AachenGoogle Scholar
  23. 23.
    Malkow Th, Quadakkers WJ, Singheiser L, Nickel H (1998) Ber Forschungszentrums Jülich, Jül-3589. Forschungszentrum Jülich, GermanyGoogle Scholar
  24. 24.
    Tanasescu S, Totir ND, Marchidan DI (1998) Electrochim Acta 43:1675Google Scholar
  25. 25.
    Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79Google Scholar

Copyright information

© Springer-Verlag  2003

Authors and Affiliations

  • Rajendra N. Basu
    • 1
    • 2
  • Frank Tietz
    • 1
  • Oliver Teller
    • 1
    • 3
  • Egbert Wessel
    • 1
  • Hans Peter Buchkremer
    • 1
  • Detlev Stöver
    • 1
  1. 1.Forschungszentrum Jülich GmbH, Institute for Materials and Processing in Energy Systems (IWV), 52425 Julich, Germany
  2. 2.Permanent address: Central Glass & Ceramic Research Institute, Calcutta 700 032, India
  3. 3.W.L. Gore & Associates GmbH, P.O. Box 1152, 85636 Munich, Germany

Personalised recommendations