Advertisement

Oral and Maxillofacial Surgery

, Volume 20, Issue 3, pp 295–302 | Cite as

Monitoring carcinogenesis in a case of oral squamous cell carcinoma using a panel of new metabolic blood biomarkers as liquid biopsies

  • Martin Grimm
  • Sebastian Hoefert
  • Michael Krimmel
  • Thorsten Biegner
  • Oliver Feyen
  • Peter Teriete
  • Siegmar Reinert
Case Report

Abstract

Introduction

One of the common malignant tumors of the head and neck worldwide with generally unfavorable prognosis is squamous cell carcinoma (OSCC) of the oral cavity. Early detection of primary, secondary, or recurrent OSCC by liquid biopsy tools is much needed.

Case presentation

Twelve blood biomarkers were used for monitoring a case of OSCC suffering from precancerous oral lichen ruber planus mucosae (OLP). After curative R0 tumor resection of primary OSCC (buccal mucosa), elevated epitope detection in monocytes (EDIM)-Apo10, EDIM-transketolase-like-1 (TKTL1), squamous cell carcinoma antigen (SCC-Ag), total serum lactate dehydrogenase (LDH), and its anaerobic isoforms (LDH-4, LDH-5) decreased to normal levels. Three and six months after surgery, transformation of suspicious mucosal lesions has been accompanied with an increase of EDIM scores, total serum LDH values, and a metabolic shift from aerobic (decrease of LDH-1, LDH-2) to anaerobic (increase of LDH-4, LDH-5) conditions. Two months later, secondary OSCC was histopathologically analyzed after tissue biopsy. Cytokeratin fraction 21-1 (CYFRA 21-1), carcinoembryonic antigen (CEA), and carbohydrate antigen 19-9 (CA19-9) were not affected during the clinical course of carcinogenesis.

Conclusions

A combination strategy using a standardized panel of established (metabolic) blood biomarkers (TKTL1, LDH, LDH isoenzymes) is worth and can be recommended among others (apoptosis resistance-related Apo10, SCC-Ag) for early detection and diagnosis of primary, secondary, and recurrent OSCC. A tandem strategy utilizing (metabolic pronounced) routine liquid biopsies with imaging techniques may enhance diagnosis of OSCC in the future. Although we demonstrated the diagnostic utility of separated liquid biopsies in our previous study cohorts, further investigations in a larger patient cohort are necessary to recommend this combination strategy (EDIM blood test, LDH value, metabolic shift of LDH isoenzymes, and others, e.g., SCC-Ag or immunophenotyping) as a diagnostic tool for the addition to the OSCC staging system and as a routine procedure in the aftercare.

Keywords

Biomarkers monitoring Transketolase-like-1 Lactate dehydrogenase Squamous cell carcinoma antigen Cytokeratin fraction 21-1 Epitope detection in monocytes (EDIM) technology Oral squamous cell carcinoma 

Abbreviations

OSCC

oral squamous cell carcinoma

EDIM

epitope detection in monocytes

TKTL1

Transketolase-like-1

SCC-Ag

squamous cell carcinoma antigen

CYFRA 21-1

cyotokeratin fraction 21–-1

H&E

Hematoxylin and Eosin

Notes

Acknowledgments

We thank biovis’ Diagnostik MVZ especially Melanie Hügen and Martina Thümmler for the technical support.

Authors’ contributions

MG, SH, and MK performed follow-up of the patient and were major contributors in conducting, writing, and revising the manuscript. TB and MG evaluated the immunohistology and immunohistochemistry slides. OF performed the flow cytometric analysis. PT and SR conceived the study and drafted the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Consent

Written informed consent to participate was obtained prospectively from the patient (Ethics Committee Tuebingen, Germany, approval number: 562-2013BO2).

Competing interests

OF is an employee and shareholder of Zyagnum AG, Frankfurt am Main, Germany, and declares a potential conflict of interest due to the possible utilization of Apo10 and TKTL1 for diagnostic and/or therapeutic purposes. The authors have no other affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

References

  1. 1.
    Rethman MP, Carpenter W, Cohen EE, Epstein J, Evans CA, Flaitz CM, Graham FJ, Hujoel PP, Kalmar JR, Koch WM, Lambert PM, Lingen MW, Oettmeier BW, Jr., Patton LL, Perkins D, Reid BC, Sciubba JJ, Tomar SL, Wyatt AD, Jr., Aravamudhan K, Frantsve-Hawley J, Cleveland JL, Meyer DM, American Dental Association Council on Scientific Affairs Expert Panel on Screening for Oral Souamous Cell C (2012) Evidence-based clinical recommendations regarding screening for oral squamous cell carcinomas. Tex Dent J 129 (5):491–507PubMedGoogle Scholar
  2. 2.
    Czerninski R, Basile JR, Kartin-Gabay T, Laviv A, Barak V (2014) Cytokines and tumor markers in potentially malignant disorders and oral squamous cell carcinoma: a pilot study. Oral Dis 20(5):477–481. doi: 10.1111/odi.12160 CrossRefPubMedGoogle Scholar
  3. 3.
    Lin WH, Chen IH, Wei FC, Huang JJ, Kang CJ, Hsieh LL, Wang HM, Huang SF (2011) Clinical significance of preoperative squamous cell carcinoma antigen in oral-cavity squamous cell carcinoma. Laryngoscope 121(5):971–977. doi: 10.1002/lary.21721 CrossRefPubMedGoogle Scholar
  4. 4.
    Rajkumar K, Ramya R, Nandhini G, Rajashree P, Ramesh Kumar A, Nirmala Anandan S (2015) Salivary and serum level of CYFRA 21-1 in oral precancer and oral squamous cell carcinoma. Oral Dis 21(1):90–96. doi: 10.1111/odi.12216 CrossRefPubMedGoogle Scholar
  5. 5.
    da Silva SD, Ferlito A, Takes RP, Brakenhoff RH, Valentin MD, Woolgar JA, Bradford CR, Rodrigo JP, Rinaldo A, Hier MP, Kowalski LP (2011) Advances and applications of oral cancer basic research. Oral Oncology 47(9):783–791. doi: 10.1016/j.oraloncology.2011.07.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Krimmel M, Hoffmann J, Krimmel C, Cornelius CP, Schwenzer N (1998) Relevance of SCC-Ag, CEA, CA 19.9 and CA 125 for diagnosis and follow-up in oral cancer. J Craniomaxillofac Surg Off Publ European Assoc Craniomaxillofac Surg 26(4):243–248Google Scholar
  7. 7.
    Sawant SS, Zingde SM, Vaidya MM (2008) Cytokeratin fragments in the serum: their utility for the management of oral cancer. Oral Oncol 44(8):722–732. doi: 10.1016/j.oraloncology.2007.10.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S (2014) Association of cancer metabolism-related proteins with oral carcinogenesis—indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 12:208. doi: 10.1186/1479-5876-12-208 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grimm M, Kraut W, Hoefert S, Krimmel M, Biegner T, Teriete P, Cetindis M, Polligkeit J, Kluba S, Munz A, Reinert S (2015) Evaluation of a biomarker based blood test for monitoring surgical resection of oral squamous cell carcinomas. Clin Oral Invest. doi: 10.1007/s00784-015-1518-0 Google Scholar
  10. 10.
    Grimm M, Krimmel M, Hoefert S, Kraut W, Calgeer B, Biegner T, Teriete P, Munz A, Reinert S (2015) Monitoring a ‘metabolic shift’ after surgical resection of oral squamous cell carcinomas by serum lactate dehydrogenase. J Oral Pathol Med Off Publ Int Assoc Oral Pathologists Am Acad Oral Pathol. doi: 10.1111/jop.12374 Google Scholar
  11. 11.
    Project TIN-HsLPF (1993) A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 329(14):987–994. doi: 10.1056/NEJM199309303291402 CrossRefGoogle Scholar
  12. 12.
    Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Spatz A, Grob JJ, Malvehy J, Newton-Bishop J, Stratigos A, Pehamberger H, Eggermont AM, European Dermatology F, European Association of D-O, European Organization of R, Treatment of C (2012) Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline–Update 2012. Eur J Cancer 48(15):2375–2390. doi: 10.1016/j.ejca.2012.06.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Grimm M, Schmitt S, Teriete P, Biegner T, Stenzl A, Hennenlotter J, Muhs HJ, Munz A, Nadtotschi T, Konig K, Sanger J, Feyen O, Hofmann H, Reinert S, Coy JF (2013) A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 13(1):569. doi: 10.1186/1471-2407-13-569 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Feyen O, Coy JF, Prasad V, Schierl R, Saenger J, Baum RP (2012) EDIM-TKTL1 blood test: a noninvasive method to detect upregulated glucose metabolism in patients with malignancies. Future Oncol 8(10):1349–1359. doi: 10.2217/fon.12.98 CrossRefPubMedGoogle Scholar
  15. 15.
    Parihar A, Eubank TD, Doseff AI (2010) Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immu 2(3):204–215. doi: 10.1159/000296507 CrossRefGoogle Scholar
  16. 16.
    Soland TM, Brusevold IJ (2013) Prognostic molecular markers in cancer - quo vadis? Histopathology 63(3):297–308. doi: 10.1111/his.12184 CrossRefPubMedGoogle Scholar
  17. 17.
    Powers RH, Dean DE (2009) Evaluation of potential lactate/lactate dehydrogenase interference with an enzymatic alcohol analysis. J Anal Toxicol 33(8):561–563CrossRefPubMedGoogle Scholar
  18. 18.
    Jansen N, Coy JF (2013) Diagnostic use of epitope detection in monocytes blood test for early detection of colon cancer metastasis. Future Oncol 9(4):605–609. doi: 10.2217/fon.13.8 CrossRefPubMedGoogle Scholar
  19. 19.
    Grimm M, Lazariotou M (2012) Clinical relevance of a new pre-treatment laboratory prognostic index in patients with oral squamous cell carcinoma. Med Oncol 29(3):1435–1447. doi: 10.1007/s12032-011-0045-3 CrossRefPubMedGoogle Scholar
  20. 20.
    Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Reinert S (2015) Apoptosis resistance-related ABCB5 and DNaseX (Apo10) expression in oral carcinogenesis. Acta Odontol Scand 73(5):336–342. doi: 10.3109/00016357.2014.961029 CrossRefPubMedGoogle Scholar
  21. 21.
    Khurana P, Tyagi N, Salahuddin A, Tyagi SP (1990) Serum lactate dehydrogenase isoenzymes in breast tumours. Indian J Pathol Microbiol 33(4):355–359PubMedGoogle Scholar
  22. 22.
    Cantor JR, Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2(10):881–898. doi: 10.1158/2159-8290.CD-12-0345 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013 CrossRefPubMedGoogle Scholar
  24. 24.
    Grimm M, Munz A, Teriete P, Nadtotschi T, Reinert S (2014) GLUT-1/TKTL1 coexpression predicts poor outcome in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 117(6):743–753. doi: 10.1016/j.oooo.2014.02.007 CrossRefPubMedGoogle Scholar
  25. 25.
    Kostakoglu L, Fardanesh R, Posner M, Som P, Rao S, Park E, Doucette J, Stein EG, Gupta V, Misiukiewicz K, Genden E (2013) Early detection of recurrent disease by FDG-PET/CT leads to management changes in patients with squamous cell cancer of the head and neck. Oncologist 18(10):1108–1117. doi: 10.1634/theoncologist.2013-0068 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Suenaga Y, Kitajima K, Ishihara T, Sasaki R, Otsuki N, Nibu KI, Minamikawa T, Kiyota N, Sugimura K (2015) FDG-PET/contrast-enhanced CT as a post-treatment tool in head and neck squamous cell carcinoma: comparison with FDG-PET/non-contrast-enhanced CT and contrast-enhanced CT. European Radiol. doi: 10.1007/s00330-015-3902-1 Google Scholar
  27. 27.
    Yeh CY, Lin CL, Chang MC, Chen HM, Kok SH, Chang SH, Kuo YS, Hahn LJ, Chan CP, Lee JJ, Jeng JH (2015) Differences in oral habit and lymphocyte subpopulation affect malignant transformation of patients with oral precancer. J Formos Med Assoc Taiwan yi zhi. doi: 10.1016/j.jfma.2015.07.017 Google Scholar
  28. 28.
    Lee JJ, Lin CL, Chen TH, Kok SH, Chang MC, Jeng JH (2010) Changes in peripheral blood lymphocyte phenotypes distribution in patients with oral cancer/oral leukoplakia in Taiwan. Int J Oral Maxillofac Surg 39(8):806–814. doi: 10.1016/j.ijom.2010.04.045 CrossRefPubMedGoogle Scholar
  29. 29.
    Millrud CR, Mansson Kvarnhammar A, Uddman R, Bjornsson S, Riesbeck K, Cardell LO (2012) The activation pattern of blood leukocytes in head and neck squamous cell carcinoma is correlated to survival. PLoS one 7(12):e51120. doi: 10.1371/journal.pone.0051120 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tabata T, Hazama S, Yoshino S, Oka M (1999) Th2 subset dominance among peripheral blood T lymphocytes in patients with digestive cancers. Am J Surg 177(3):203–208CrossRefPubMedGoogle Scholar
  31. 31.
    Young M (2014) Immunological phenotypes of premalignant oral lesions and the immune shifts with the development of head and neck cancer. Austin J Otolaryngol 1(2):7Google Scholar
  32. 32.
    Ma Y, Zhang Z, Tang L, Xu YC, Xie ZM, Gu XF, Wang HX (2012) Cytokine-induced killer cells in the treatment of patients with solid carcinomas: a systematic review and pooled analysis. Cytotherapy 14(4):483–493. doi: 10.3109/14653249.2011.649185 CrossRefPubMedGoogle Scholar
  33. 33.
    Grimm M, Feyen O, Hofmann H, Teriete P, Biegner T, Munz A, Reinert S (2015) Immunophenotyping of patients with oral squamous cell carcinoma in peripheral blood and associated tumor tissue. Tumour Biol J Int Soc Oncodevelopmental Biol Med. doi: 10.1007/s13277-015-4224-2 Google Scholar
  34. 34.
    Omar E (2015) Future imaging alternatives: the clinical non-invasive modalities in diagnosis of oral squamous cell carcinoma (OSCC). Open Dentist J 9:311–318. doi: 10.2174/1874210601509010311 CrossRefGoogle Scholar
  35. 35.
    Omar E (2015) Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma–a systematic review. Head Face Med 11:6. doi: 10.1186/s13005-015-0063-z CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Weigum SE, Floriano PN, Redding SW, Yeh CK, Westbrook SD, McGuff HS, Lin A, Miller FR, Villarreal F, Rowan SD, Vigneswaran N, Williams MD, McDevitt JT (2010) Nano-bio-chip sensor platform for examination of oral exfoliative cytology. Cancer Prev Res 3(4):518–528. doi: 10.1158/1940-6207.CAPR-09-0139 CrossRefGoogle Scholar
  37. 37.
    Ebenezar J, Ganesan S, Aruna P, Muralinaidu R, Renganathan K, Saraswathy TR (2012) Noninvasive fluorescence excitation spectroscopy for the diagnosis of oral neoplasia in vivo. J Biomed Opt 17(9):97007–97001. doi: 10.1117/1.JBO.17.9.097007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martin Grimm
    • 1
  • Sebastian Hoefert
    • 1
  • Michael Krimmel
    • 1
  • Thorsten Biegner
    • 2
  • Oliver Feyen
    • 3
  • Peter Teriete
    • 4
  • Siegmar Reinert
    • 1
  1. 1.Department of Oral and Maxillofacial SurgeryTuebingen University HospitalTuebingenGermany
  2. 2.Department of PathologyUniversity Hospital TuebingenTuebingenGermany
  3. 3.Zyagnum AGFrankfurt am MainGermany
  4. 4.Cancer Research CenterSanford-Burnham Medical Research InstituteLa JollaUSA

Personalised recommendations