Oral and Maxillofacial Surgery

, Volume 16, Issue 2, pp 189–196 | Cite as

Correlation of expression of hypoxia-related proteins with prognosis in oral squamous cell carcinoma patients

  • A. W. Eckert
  • M. Kappler
  • J. Schubert
  • H. Taubert
Review Article



Hypoxia plays a major role in tumor progression, therapy resistance and for prognosis of oral squamous cell carcinoma (OSCC). The crucial step as a response to hypoxia is the activation and stabilization of the alpha subunit of hypoxia inducible factor 1 (HIF-1α).


HIF-1 regulates the expression of different genes to adapt the tumor cells to reduced oxygenation. The HIF-1 system is intrinsic regulated by von Hippel–Lindau protein (pVHL). Main downstream proteins are the glucose transporter 1 (GLUT-1), carbonic anhydrase IX (CAIX), and vascular endothelial growth factor (VEGF). For therapeutical stratification in OSCC, it is important to understand the mechanism caused by hypoxic stress and to comprehend the resulting adaptive process in cancer cells. Therefore, an overview of HIF-1α-depending protein expression, focussed on the expression of GLUT-1, CAIX, and VEGF and their prognostic significance in OSCC is given.


Several unique roles of hypoxic pathway in the context of tumor progression are described in this review. As a consequence, a marker panel is proposed to allow a more individualized prognosis in OSCC patients. This marker panel should include beside HIF-1α, pVHL, and GLUT-1.


Oral squamous cell carcinoma Hypoxia HIF Pathways 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abreu L, Kruger E, Tennant M (2010) Oral cancer in Western Australia: 1982–2006: a retrospective epidemiological study. Oral Pathol Med 39:376–381Google Scholar
  2. 2.
    Zini A, Czerninski R, Sgan-Cohen HD (2010) Oral cancer over four decades: epidemiology, trends, histology, and survival by anatomical sites. Oral Pathol Med 39:299–305CrossRefGoogle Scholar
  3. 3.
    Oliveira LR, Ribeiro-Silva A (2011) Prognostic significance of immunohistochemical biomarkers in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 40:298–307PubMedCrossRefGoogle Scholar
  4. 4.
    Schliephake H (2003) Prognostic relevance of molecular markers of oral cancer—a review. Int J Oral Maxillofac Surg 32:233–245PubMedCrossRefGoogle Scholar
  5. 5.
    Lothaire P, Azambuja E, Dequanter D, Lalami Y, Sotiriou C, Andry G, Castro G, Awada A (2006) Molecular markers of head and neck squamous cell carcinoma: promising signs in need of prospective evaluation. Head Neck 28:256–269PubMedCrossRefGoogle Scholar
  6. 6.
    Kim KY, Li S, Cha JD, Zhang X, Cha IH (2011) Significance of molecular markers in survival prediction of oral squamous call carcinoma. Head Neck. doi: 10.1002/hed.21856
  7. 7.
    Pérez-Sayáns M, Suárez-Peñaranda JM, Pilar GD, Barros-Angueira F, Gándara-Rey JM, García-García A (2011) Hypoxia-inducible factors in OSCC. Cancer Lett 313:1–8PubMedCrossRefGoogle Scholar
  8. 8.
    Cassavaugh J, Luonsbury KM (2011) Hypoxia-mediated biological control. J Cell Biochem 112:735–744PubMedCrossRefGoogle Scholar
  9. 9.
    Semenza GL (2008) Hypoxia-inducible factor 1 and cancer pathogenesis. IUBMB Life 60:591–597PubMedCrossRefGoogle Scholar
  10. 10.
    Semenza GL (2009) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:1–6Google Scholar
  11. 11.
    Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634PubMedCrossRefGoogle Scholar
  12. 12.
    Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastas Rev 26:225–239CrossRefGoogle Scholar
  13. 13.
    Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237PubMedCrossRefGoogle Scholar
  14. 14.
    Denko NC (2008) Hypoxia, HIF-1 and glucose metabolism in the solid tumor. Nature Rev Cancer 8:705–713CrossRefGoogle Scholar
  15. 15.
    Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastas Rev 26:299–310CrossRefGoogle Scholar
  16. 16.
    Rankin EB, Giaccia AJ (2008) The role of hypoxia inducible factors in tumorigenesis. Cell Death Differ 15:678–685PubMedCrossRefGoogle Scholar
  17. 17.
    Calzada MJ, del Peso L (2007) Hypoxia-inducible factors in cancer. Clin Transl Oncol 5:278–289CrossRefGoogle Scholar
  18. 18.
    Sendoel A, Kohler I, Fellmann C, Lowe SW, Hengartner MO (2010) HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 465:577–583PubMedCrossRefGoogle Scholar
  19. 19.
    Keith B, Johnson RS, Simon MC (2011) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12:9–22PubMedCrossRefGoogle Scholar
  20. 20.
    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia inducible factor 1 is a basic–helix–loop–helix–PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514PubMedCrossRefGoogle Scholar
  21. 21.
    Huang LE, Bunn HF (2003) Hypoxia-inducible factor and its biomedical relevance. J Biol Chem 278:19575–19578PubMedCrossRefGoogle Scholar
  22. 22.
    Harris AL (2002) Hypoxia—a key regulatory factor in tumor growth. Nature Rev Cancer 2:38–47CrossRefGoogle Scholar
  23. 23.
    Semenza GL (2003) Targting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–731PubMedCrossRefGoogle Scholar
  24. 24.
    Eckert AW, Schütze A, Lautner MHW, Taubert H, Schubert J, Bilkenroth U (2010) HIF-1alpha is a prognostic marker in oral squamous cell carcinomas. Int J Biomark 25:87–92Google Scholar
  25. 25.
    Eckert AW, Schubert J, Taubert H (2010) Optimising the therapeutic ration in head and neck cancer. Lancet Oncol 11:511–512PubMedCrossRefGoogle Scholar
  26. 26.
    Roh JI, Cho K-J, Kwon GY, Ryu CH, Chang HW, Choi SH, Nam SY, Kim SY (2009) The prognostic value of hypoxia markers in t2-staged oral tongue cancer. Oral Oncol 45:63–68PubMedCrossRefGoogle Scholar
  27. 27.
    Uehara M, Sano K, Ikeda H, Nonaka M, Asahina I (2009) Hypoxia-inducible factor 1 alpha in oral squamous cell carcinoma and its relation to prognosis. Oral Oncol 45:241–246PubMedCrossRefGoogle Scholar
  28. 28.
    Winter SC, Shah KA, Han C et al (2006) The relation between hypoxia-inducible factor (HIF)-1 alpha and HIF-2 alpha expression with anemia and outcome in surgically treated head and neck cancer. Cancer 107:757–766PubMedCrossRefGoogle Scholar
  29. 29.
    Beasley NJP, Leek R, Alam M et al (2002) Hypoxia-inducible factors HIF-1α and HIF-2α in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 62:2493–2497PubMedGoogle Scholar
  30. 30.
    Koukourakis MI, Bentzen SM, Giatromanolaki A et al (2006) Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol 24:727–735PubMedCrossRefGoogle Scholar
  31. 31.
    Lin P-Y, Yu C-H, Wang J-T et al (2008) Expression of hypoxia-inducible factor 1α is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. J Oral Pathol Med 37:18–25PubMedCrossRefGoogle Scholar
  32. 32.
    Fillies T, Werkmeister R, van Diest PJ, Brandt B, Joos U, Burger H (2005) HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor. BMC Cancer 5:84PubMedCrossRefGoogle Scholar
  33. 33.
    Aebershold DM, Burri P, Beer KT et al (2001) Expression of hypoxia-inducible factor 1 alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61:2911–2916Google Scholar
  34. 34.
    Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270PubMedGoogle Scholar
  35. 35.
    Chiche J, Brahimi-Horn C, Pouysségur J (2010) Tumor hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–794PubMedCrossRefGoogle Scholar
  36. 36.
    Reißer C, Eichhorn K, Mende CH (1999) Glukoseaufnahme maligner Kopf-Hals-Tumoren. HNO 47:712–717PubMedCrossRefGoogle Scholar
  37. 37.
    Reißer C, Eichhorn K, Herold-Mende C, Born A, Bannasch P (1999) Expression of facilitative glucose transport proteins during development of squamous cell carcinomas of the head and neck. Int J Cancer 80:194–198PubMedCrossRefGoogle Scholar
  38. 38.
    Brahimi-Horn C, Pouysségur J (2006) The role of hypoxia-inducible factor in tumor growth and invasion. Bull Cancer 93:73–80Google Scholar
  39. 39.
    Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, Bartenstein P, Wagner W, Whiteside TL (2003) Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 97:1015–1024PubMedCrossRefGoogle Scholar
  40. 40.
    Tian M, Zhang H, Nakasone Y, Mogi K, Endo K (2004) Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation in a PET study. Eur J Nucl Med Mol Imaging 1:5–12CrossRefGoogle Scholar
  41. 41.
    Ayala FR, Rocha RM, Carvalho KC, Carvalho AL, da Cunha IW, Lourenço SV, Soares FA (2010) GLUT1 and GLUT3 as potential prognostic markers for oral squamous cell carcinoma. Molecules 15:2374–2387PubMedCrossRefGoogle Scholar
  42. 42.
    Eckert AW, Lautner MH, Taubert H, Schubert J, Bilkenroth U (2008) Expression of Glut-1 is a prognostic marker for oral squamous cell carcinoma patients. Oncol Rep 20:1381–1385PubMedGoogle Scholar
  43. 43.
    Mayer A, Höckel M, Horn LC, Schmidberger H, Vaupel P (2011) GLUT-1 staining of squamous cell carcinomas of the uterine cervix identifies a novel element of invasion. Int J Oncol 38:145–150PubMedGoogle Scholar
  44. 44.
    Potente M, Gerhardt H, Carmeliet (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887PubMedCrossRefGoogle Scholar
  45. 45.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  46. 46.
    Nayak S, Goel MM, Chandra S, Bhatia V, Mehrotra D, Kumar S, Makker A, Rath SK, Agarwal SP (2012) VEGF-A immunohistochemical and mRNA expression in tissues and its serum levels in potentially malignant oral lesions and oral squamous cell carcinomas. Oral Oncol 48:233–239PubMedCrossRefGoogle Scholar
  47. 47.
    Fox S (1997) Tumour angiogenesis and prognosis. Histopathology 30:294–301PubMedCrossRefGoogle Scholar
  48. 48.
    Shemiranio B, Crowe DL (2002) Hypoxic induction of HIF-1α and VEGF expression in head and neck squamous cell carcinoma cell lines is mediated by stress activated protein kinases. Oral Oncol 38:251–257CrossRefGoogle Scholar
  49. 49.
    Mohamed KM, Le A, Duong H, Wu Y, Zhang Q, Messadi DV (2004) Correlation between VEGF and HIF-1alpha expression in human squamous cell carcinoma. Exp Mol Pathol 76:143–152PubMedCrossRefGoogle Scholar
  50. 50.
    Pufe T, Harde V, Petersen W, Goldring MB, Tillmann B, Mentlein R (2004) Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J Pathol 202:367–374PubMedCrossRefGoogle Scholar
  51. 51.
    Artese L, Rubini C, Ferrero G, Fioroni M, Santinelli A, Piattelli A (2001) Microvessel density (MVD) and vascular endothelial growth factor expression (VEGF) in human oral squamous cell carcinoma. Anticancer Res 21:689–695PubMedGoogle Scholar
  52. 52.
    Chien SY, Su CY, Hwang CF, Chuang HC, Chen CM, Huang CC (2006) High expressions of CD 105 and VEGF in early oral cancer predict potential cervical metastasis. J Surg Oncol 94:413–417PubMedCrossRefGoogle Scholar
  53. 53.
    Shao Z, Zhang WF, Chen XM, Shang ZJ (2008) Expression of EphA2 and VEGF in squamous cell carcinoma of the tongue: correlation with the angiogenesis and clinical outcome. Oral Oncol 44:1110–1117PubMedCrossRefGoogle Scholar
  54. 54.
    Maeda T, Matsumura S, Hiranuma H, Jikko A, Furukawa S, Ishada T, Fuchihata H (1998) Expression of vascular endothelial growth factor in human oral squamous cell carcinoma: its association with tumor progression and p53 gene status. J Clin Pathol 51:771–775PubMedCrossRefGoogle Scholar
  55. 55.
    Smith BD, Smith GL, Carter D, Sasaki CT, Haffty BG (2000) Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal sqamous cell carcinoma. J Clin Oncol 18:2046–2052PubMedGoogle Scholar
  56. 56.
    Smith BD, Smith GL, Carter D, Di Giovanna MP, Kasowitz KM, Sasaki CT, Haffty BG (2001) Moleular marker expression in oral and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 127:780–785PubMedGoogle Scholar
  57. 57.
    Kyzas PA, Cunha IW, Ioannidis JP (2005) Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin Cancer Res 11:1434–1440PubMedCrossRefGoogle Scholar
  58. 58.
    Mărgăritescu C, Pirici D, Stîngă A, Simionescu C, Raica M, Mogoantă L, Stepan A, Ribatti D (2010) VEGF expression and angiogenesis in oral squamous cell carcinoma: an immunohistochemical and morphometric study. Clin Exp Med 10:209–214PubMedCrossRefGoogle Scholar
  59. 59.
    Liang X, Yang D, Hu J, Hao X, Gao J, Mao Z (2008) Hypoxia inducible factor-alpha expression correlates with vascular endothelial growth factor-C expression and lymphangiogenesis/angiogenesis in oral squamous cell carcinoma. Anticancer Res 28:1659–1666PubMedGoogle Scholar
  60. 60.
    Shang ZJ, Li JR, Li ZB (2007) Upregulation of serum and tissue vascular endothelial growth factor correlates with angiogenesis and prognosis of oral squamous cell carcinoma. J Oral Maxillofac Surg 65:17–21PubMedCrossRefGoogle Scholar
  61. 61.
    Shang ZJ, Li ZB, Li JR (2006) VEGF is up-regulated by hypoxic stimulation and related to tumour angiogenesis and severity of disease in oral squamous cell carcinoma: in vitro and in vivo studies. Int J Oral Maxillofac Surg 35:533–538PubMedCrossRefGoogle Scholar
  62. 62.
    Shintani S, Li C, Ishikawa T, Mihara M, Nakashiro K, Hamakawa H (2004) Expression of vascular endothelial growth factor A, B, C, and D in oral squamous cell carcinoma. Oral Oncol 40:13–20PubMedCrossRefGoogle Scholar
  63. 63.
    de Cicco RL, Watson JC, Bassi DE, Litwin S, Klein-Szanto AJ (2004) Simultaneous expression of furin and vascular endothelial growth factor in human oral tongue squamous cell carcinoma progression. Clin Cancer Res 10:4480–4488CrossRefGoogle Scholar
  64. 64.
    Muñoz-Guerra MF, Marazuela EG, Martin-Villar E, Quintanilla M, Gamallo C (2004) Prognostic significance of intratumoral lymphangiogenesis in squamous cell carcinoma of the oval cavity. Cancer 100(3):553–560 PubMedCrossRefGoogle Scholar
  65. 65.
    Bolte K, Kappler M, Bilkenroth U, Taubert H, Schubert J, Eckert AW (2012) Expression of VEGF-C and other proteins as prognostic markers in OSCC (in preparation)Google Scholar
  66. 66.
    Sedivy R, Beck-Mannagetta J, Haverkampf C, Battistutti W, Hönigschnabl S (2003) Expression of vascular endothelial growth factor-C correlates with the lymphatic microvessel density and the nodal status in oral squamous cell carcinoma. J OralPathol Med 32:455–460CrossRefGoogle Scholar
  67. 67.
    Naruse T, Kawasaki G, Yanamoto S, Mizuno A, Umeda M (2011) Immunohistochemical study of VEGF expression in oral squamous cell carcinomas: correlation with mTOR-HIF-1α pathway. Anticancer Res 31:4429–4437PubMedGoogle Scholar
  68. 68.
    Nógrádi A (1998) The role of carbonic anhydrases in tumors. Am J Pathol 153:1–4PubMedCrossRefGoogle Scholar
  69. 69.
    Konno H, Ishii G, Nagai K, Yoshida J, Nishimura M, Nara M, Fujii T, Murata Y, Miyamoto H, Ochiai A (2006) Carbonic anhydrase IX expression is associated with tumor progression and poor prognosis of lung adenocarcinoma. Lung Cancer 54:409–418CrossRefGoogle Scholar
  70. 70.
    Hoogsteen IJ, Marres HAM, Wijffels KIEM, Rijken PFJW, Peters JPW, van der Hoogen FJA, Oosterwijk E, van der Kogel A, Kaanders JHAM (2005) Colonization of carbonic anhydrase and cell proliferation in human head and neck squamous cell carcinoma. Clin Cancer Res 11:97–106PubMedGoogle Scholar
  71. 71.
    Kondo Y, Yoshikawa K, Omura Y, Shinohara A, Kazaoka Y, Sano J, Mizuno Y, Yokoi T, Yamada S (2011) Clinicopathological significance of carbonic anhydrase 9, glucose transporter-1, Ki-67 and p53 expression in oral squamous cell carcinoma. Oncol Rep 25:1227–123PubMedGoogle Scholar
  72. 72.
    Choi SW, Kim JY, Park JY, Cha IH, Kim J, Lee S (2008) Expression of carbonic anhydrase IX is associated with postoperative recurrence and poor prognosis in surgically treated oral squamous cell carcinoma. Hum Pathol 39:1317–1322PubMedCrossRefGoogle Scholar
  73. 73.
    Brockton NT, Klimowicz AC, Bose P, Petrillo SK, Konno M, Rudmik L, Dean M, Nakoneshny SC, Matthews TW, Chandarana S, Lau HY, Magliocco AM, Dort JC (2012) High stromal carbonic anhydrase IX expression is associated with nodal metastasis and decreased survival in patients with surgically-treated oral cavity squamous cell carcinoma. Oral Oncol. doi: 10.1016/j.ovaloncology.2012.01.018
  74. 74.
    Eckert AW, Lautner MHW, Taubert H, Schütze A, Bolte K, Bache M, Kappler M, Schubert J, Bilkenroth U (2009) Co-expression of HIF-1α and CAIX is associated with poor prognosis in oral squamous cell carcinoma patients. J Oral Pathol Med 39:313–317PubMedGoogle Scholar
  75. 75.
    Zeng W, Wan R, Zheng Y, Singh SR, Wei Y (2011) Hypoxia, stem cells and bone tumor. Cancer Lett 313:129–136PubMedCrossRefGoogle Scholar
  76. 76.
    Gatenby RA, Gillies RJ (2004) Why do cancer have high anaerobic glycolysis? Nature Rev Cancer 4:891–899CrossRefGoogle Scholar
  77. 77.
    Le Q-T, Kong C, Lavori P, O’Byrne K, Erler JT, Huang X, Chen Y, Cao H, Tibshirani R, Denko N, Giaccia AJ, Kong AC (2007) Expression and prognostic significance of a panel of tissue hypoxia markers in head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 69:167–175PubMedCrossRefGoogle Scholar
  78. 78.
    Eckert AW, Lautner HMW, Schütze A, Taubert H, Schubert J, Bilkenroth U (2011) Co-expression of hypoxia-inducible factor 1 alpha (HIF1α) and glucose transporter 1 (GLUT-1) is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 58:1138–1147CrossRefGoogle Scholar
  79. 79.
    Han MW, Lee HJ, Cho KJ, Kim JS, Roh JL, Choi SH, Nam SY, Kim SY (2011) Role of FDG-PET as a biological marker for predicting the hypoxic status of tongue cancer. Head Neck. doi: 10.1002/hed.21945
  80. 80.
    Kaluz S, Kaluzova M, Chrastina A, Olive PL, Pastoreková S, Pastorek J, Lerman MI, Stanbridge E (2002) Lowered oxygen tension induces expresseion of the hypoxia marker MN/carbonic anhydrase IX in the absence of hypoxia-inducible factor 1α stabilization: a role for phosphatidylinositol 3′-kinase. Cancer Res 62:4469–4477PubMedGoogle Scholar
  81. 81.
    Jokilehto T, Jaakkola PM (2010) The role of prolylhydroxylases in tumour growth. J Cell Mol Med 14(4):758–770PubMedCrossRefGoogle Scholar
  82. 82.
    Mayer A, Höckel M, Vaupel P (2008) Endogenous hypoxia markers: case not proven! Adv Exp Med Biol 614:127–136PubMedCrossRefGoogle Scholar
  83. 83.
    Corry J, Peters LJ, Rischin D (2010) Optimising the therapeutic ration in head and neck cancer. Lancet Oncol 11:287–291PubMedCrossRefGoogle Scholar
  84. 84.
    Nayak S, Goel MM, Chandra S, Bhatia V, Mehrotra D, Kumar S, Makker A, Rath SK, Agarwal SP (2012) VEGF-A immunohistochemical and mRNA expression in tissues and its serum levels in potentially malignant oral lesions and oral squamous cell carcinomas. Oral Oncol 48:233–239PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. W. Eckert
    • 1
  • M. Kappler
    • 1
  • J. Schubert
    • 1
  • H. Taubert
    • 2
  1. 1.Department of Oral and Maxillofacial Plastic SurgeryMartin-Luther-University Halle-WittenbergHalleGermany
  2. 2.Division of Molecular UrologyClinic of Urology FA University Hospital ErlangenErlangenGermany

Personalised recommendations