Solar Physics

, Volume 243, Issue 1, pp 19–61 | Cite as

The EUV Imaging Spectrometer for Hinode

  • J. L. Culhane
  • L. K. Harra
  • A. M. James
  • K. Al-Janabi
  • L. J. Bradley
  • R. A. Chaudry
  • K. Rees
  • J. A. Tandy
  • P. Thomas
  • M. C. R. Whillock
  • B. Winter
  • G. A. Doschek
  • C. M. Korendyke
  • C. M. Brown
  • S. Myers
  • J. Mariska
  • J. Seely
  • J. Lang
  • B. J. Kent
  • B. M. Shaughnessy
  • P. R. Young
  • G. M. Simnett
  • C. M. Castelli
  • S. Mahmoud
  • H. Mapson-Menard
  • B. J. Probyn
  • R. J. Thomas
  • J. Davila
  • K. Dere
  • D. Windt
  • J. Shea
  • R. Hagood
  • R. Moye
  • H. Hara
  • T. Watanabe
  • K. Matsuzaki
  • T. Kosugi
  • V. Hansteen
  • Ø. Wikstol
Article

Abstract

The EUV Imaging Spectrometer (EIS) on Hinode will observe solar corona and upper transition region emission lines in the wavelength ranges 170 – 210 Å and 250 – 290 Å. The line centroid positions and profile widths will allow plasma velocities and turbulent or non-thermal line broadenings to be measured. We will derive local plasma temperatures and densities from the line intensities. The spectra will allow accurate determination of differential emission measure and element abundances within a variety of corona and transition region structures. These powerful spectroscopic diagnostics will allow identification and characterization of magnetic reconnection and wave propagation processes in the upper solar atmosphere. We will also directly study the detailed evolution and heating of coronal loops. The EIS instrument incorporates a unique two element, normal incidence design. The optics are coated with optimized multilayer coatings. We have selected highly efficient, backside-illuminated, thinned CCDs. These design features result in an instrument that has significantly greater effective area than previous orbiting EUV spectrographs with typical active region 2 – 5 s exposure times in the brightest lines. EIS can scan a field of 6×8.5 arc min with spatial and velocity scales of 1 arc sec and 25 km s−1 per pixel. The instrument design, its absolute calibration, and performance are described in detail in this paper. EIS will be used along with the Solar Optical Telescope (SOT) and the X-ray Telescope (XRT) for a wide range of studies of the solar atmosphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antiochos, S., DeVore, C.R., Klimchuk, J.: 1999, Astrophys. J. 510, 485. CrossRefADSGoogle Scholar
  2. Beutler, H.G.: 1945, J. Opt. Soc. Am. 35, 311. MathSciNetADSGoogle Scholar
  3. Born, M., Wolf, E.: 1964, Principles of Optics, 2nd edn., MacMillan, New York, p. 469. Google Scholar
  4. Canali, C., Martini, M., Ottavani, G., Alberigi Quaranta, A.: 1972, IEEE Trans. Nucl. Sci. NS-19. Google Scholar
  5. Culhane, J.L., et al.: 1991, Solar Phys. 136, 89. CrossRefADSGoogle Scholar
  6. Danzmann, K., Günther, M., Fischer, J., Kock, M., Kühne, M.: 1988, Appl. Opt. 27, 4947. ADSGoogle Scholar
  7. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, Astron. Astrophys. Suppl. 125, 149. CrossRefADSGoogle Scholar
  8. Engström, L.: 1998, GFit Version 10.0. Lund Reports on Atomic Physics, LRAP-232, LTH, Lund. http://kurslab-atom.fysik.lth.se/Lars/Gfit/html/index.html.
  9. Finley, D.S., Bowyer, C.S., Paresce, F., Malina, R.F.: 1979, Appl. Opt. 18, 649. ADSGoogle Scholar
  10. Haber, H.J.: 1950, J. Opt. Soc. Am. 40, 153. ADSCrossRefGoogle Scholar
  11. Hara, H.: 2003, FM XRT-S Calibration, National Astronomical Observatory of Japan. Google Scholar
  12. Harra, L.K., Sterling, A.: 2003, Astrophys. J. 587, 429. CrossRefADSGoogle Scholar
  13. Harra, L.K., Gallagher, P.T., Phillips, K.J.H.: 2000, Astron. Astrophys. 362, 371. ADSGoogle Scholar
  14. Harra, L.K., Mandrini, C.H., Matthews, S.A.: 2004, Solar Phys. 223, 57. CrossRefADSGoogle Scholar
  15. Harrison, R.A.: 1997, Solar Phys. 175, 467. CrossRefADSGoogle Scholar
  16. Harrison, R.A., et al.: 1995, Solar Phys. 162, 233. CrossRefADSGoogle Scholar
  17. Hollandt, J.: 1994, Strahlungsnormale für die solare Spektroradiometrie im Vakuum-UV, Ph.D. dissertation, Technischen Universität, Berlin. Google Scholar
  18. Hollandt, J., Kühne, M., Huber, M.C.E., Wende, B.: 2002, In: Pauluhn, A., Huber, M.C.E., von Steiger, R. (eds.) The Radiometric Calibration of SOHO, International Space Science Institute Report SR-002, ESA, Nordwijk, p. 51. Google Scholar
  19. Innes, D.E., Inhester, B., Axford, W.I., Willhelm, K.: 1997, Nature 386, 811. CrossRefADSGoogle Scholar
  20. Kelly, R.L.: 1987, J. Chem. Phys. Ref. Data 16 (Suppl. No. 1). Google Scholar
  21. Klimchuk, J.A.: 2006, Solar Phys. 234, 41. CrossRefADSGoogle Scholar
  22. Korendyke, C.M., et al.: 2006, Appl. Opt. 45, 8674. CrossRefADSGoogle Scholar
  23. Kowalski, M.P., et al.: 1999, Appl. Opt. 38, 6487. ADSCrossRefGoogle Scholar
  24. Kramida, A.E., Brown, C.M., Feldman, U., Reader, J.: 2006, Phys. Scr. 74, 156. CrossRefADSGoogle Scholar
  25. Lang, J., Kent, B.J., Seely, J.F.: 2002, In: Pauluhn, A., Huber, M.C.E., von Steiger, R. (eds.) The Radiometric Calibration of SOHO, International Space Science Institute Report SR-002, ESA, Nordwijk, p. 337. Google Scholar
  26. Lang, J., et al.: 2000, J. Opt. A: Pure Appl. Opt. 2, 88. CrossRefADSGoogle Scholar
  27. Lang, J., et al.: 2006, Appl. Opt. 45, 8689. CrossRefADSGoogle Scholar
  28. Madjarska, M.S., Doyle, J.G., van Driel-Gesztelyi, L.: 2004, Astrophys. J. 603, L57. CrossRefADSGoogle Scholar
  29. Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y.: 1994, Nature 371, 495. CrossRefADSGoogle Scholar
  30. Nakariakov, V.M., Ofman, L.: 2001, Astron. Astrophys. 372, L53. CrossRefADSGoogle Scholar
  31. NIST Atomic Spectral Data Base: 2005, http://physics.nist.gov/cgi-bin/asd.
  32. Pevtsov, A.A.: 2000, Astrophys. J. 531, 553. CrossRefADSGoogle Scholar
  33. Powell, F.: 1992, In: Bennett, H.E., Chase, L.L., Guenther, A.H., Newman, B., Soileau, M.J. (eds.) Laser-Induced Damage in Optical Materials, Proc. SPIE 1848, 503. Google Scholar
  34. Sakao, T., et al.: 2004, In: Mather, J.C. (ed.) Optical, Infrared, and Millimeter Space Telescopes, Proc. SPIE 5487, 1189. Google Scholar
  35. Samson, J.A.R.: 1967, Vacuum Ultraviolet Spectroscopy Techniques, Wiley, New York, p. 315. Google Scholar
  36. Scholze, F., Henneken, H., Kuschnerus, P., Rabus, H., Richter, M., Ulm, G.: 2000, Nucl. Instrum. Methods 39, 208. Google Scholar
  37. Schumacher, R.J., Hunter, W.R.: 1977, Appl. Opt. 16, 904. ADSGoogle Scholar
  38. Seely, J.F., Brown, C.M., Windt, D.L., Donguy, S., Kjonrattanawanich, B.: 2004, Appl. Opt. 43, 1463. CrossRefADSGoogle Scholar
  39. Stern, R.A., et al.: 2004, In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 5171, 77. Google Scholar
  40. Sze, S.M.: 1981, Physics of Semiconductor Devices, 2nd edn., Wiley, New York, p. 754. Google Scholar
  41. Tsuneta, S.: 1995, Publ. Astron. Soc. Japan 47, 691. ADSGoogle Scholar
  42. Tsuneta, S.: 1996, Astrophys. J. 456, L63. ADSGoogle Scholar
  43. Ulm, G. Wende, B.: 1997, In: Haase, A., Landwehr, G., Umbach, E. (eds.) Röntgen Centennial, World Scientific, Singapore, p. 81. Google Scholar
  44. Wang, T.J., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E.: 2002, Astrophys. J. 574, L101. CrossRefADSGoogle Scholar
  45. Wang, T.J., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E., Kliem, B.: 2003, Astron. Astrophys. 402, L17. CrossRefADSGoogle Scholar
  46. Warren, H.: 2005, Astrophys. J. Suppl. 157, 147. CrossRefADSGoogle Scholar
  47. Warren, H., Doschek, G.A.: 2005, Astrophys. J. 618, L157. CrossRefADSGoogle Scholar
  48. Williams, D.R., et al.: 2002, Mon. Not. Roy. Astron. Soc. 336, 747. CrossRefADSGoogle Scholar
  49. Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Astrophys. J. 628, L163. CrossRefADSGoogle Scholar
  50. Yokoyama, T., Akita, K., Morimoto, T., Inoue, K., Newmark, J.: 2001, Astrophys. J. 546, L69. CrossRefADSGoogle Scholar
  51. Young, P.R., Del Zanna, G., Landi, E., Dere, K.P., Mason, H.E., Landini, M.: 2003, Astrophys. J. Suppl. 144, 135. CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • J. L. Culhane
    • 1
  • L. K. Harra
    • 1
  • A. M. James
    • 1
  • K. Al-Janabi
    • 1
  • L. J. Bradley
    • 1
  • R. A. Chaudry
    • 1
  • K. Rees
    • 1
  • J. A. Tandy
    • 1
  • P. Thomas
    • 1
  • M. C. R. Whillock
    • 1
  • B. Winter
    • 1
  • G. A. Doschek
    • 2
  • C. M. Korendyke
    • 2
  • C. M. Brown
    • 2
  • S. Myers
    • 2
  • J. Mariska
    • 2
  • J. Seely
    • 2
  • J. Lang
    • 3
  • B. J. Kent
    • 3
  • B. M. Shaughnessy
    • 3
  • P. R. Young
    • 3
  • G. M. Simnett
    • 4
  • C. M. Castelli
    • 4
  • S. Mahmoud
    • 4
  • H. Mapson-Menard
    • 4
  • B. J. Probyn
    • 4
  • R. J. Thomas
    • 5
  • J. Davila
    • 5
  • K. Dere
    • 6
  • D. Windt
    • 7
  • J. Shea
    • 8
  • R. Hagood
    • 9
  • R. Moye
    • 10
  • H. Hara
    • 11
  • T. Watanabe
    • 11
  • K. Matsuzaki
    • 12
  • T. Kosugi
    • 12
  • V. Hansteen
    • 13
  • Ø. Wikstol
    • 13
  1. 1.Mullard Space Science LaboratoryUniversity College LondonDorking, SurreyUK
  2. 2.Naval Research LaboratoryE.O. Hulburt Centre for Space ResearchWashingtonUSA
  3. 3.Space Science and Technology DepartmentRutherford Appleton LaboratoryChilton, DidcotUK
  4. 4.Space Research Group, School of Physics and Space ResearchUniversity of BirminghamBirminghamUK
  5. 5.NASA Goddard Space Flight CentreGreenbeltUSA
  6. 6.School of Computational SciencesGeorge Mason UniversityFairfaxUSA
  7. 7.Pupin Physics Laboratories, Department of AstronomyColumbia UniversityNew YorkUSA
  8. 8.Perdix CorporationWiltonUSA
  9. 9.Swales AerospaceBeltsvilleUSA
  10. 10.Artep Inc.Ellicott CityUSA
  11. 11.National Astronomical Observatory of JapanMitaka, TokyoJapan
  12. 12.Institute of Space and Astronautical ScienceSagamihara, KanagawaJapan
  13. 13.Institute of Theoretical AstrophysicsUniversity of OsloOsloNorway

Personalised recommendations