Skip to main content
Log in

Bulk and surface theoretical investigation of Nb-doped δ-FeOOH as a promising bifunctional catalyst

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The development of bifunctional catalysts is of great interest in fine chemistry, since they are capable of promoting multicatalytic reactions involved in several important industrial processes. Iron oxyhydroxides have been identified as low-cost bifunctional catalysts. However, their applications are limited due to their weak acid character. Thus, elaborated modifications of these systems can significantly contribute to increasing their activities and selectivity. This work consists in the study, through DFT calculations, of the properties of the bulk and the surface of feroxyhyte (δ-FeOOH) doped with niobium, as a potential bifunctional catalyst. We identified the formation of stronger van der Waals interactions among the doped δ-FeOOH layers, which can increase the thermal stability of the catalyst. In addition, evidence has been found that the insertion of Nb increases Brönsted acidity and gives rise to new Lewis acid sites on the catalyst surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All relevant data are within the paper and its supporting information files.

Code availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitation.

References

  1. Kasipandi S, Bae JW (2019) Recent advances in direct synthesis of value-added aromatic chemicals from syngas by cascade reactions over bifunctional catalysts. Adv Mater 31:1803390. https://doi.org/10.1002/adma.201803390

    Article  CAS  Google Scholar 

  2. Zhang H et al (2019) Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts. Renew Sustain Energy Rev 114:109296. https://doi.org/10.1016/j.rser.2019.109296

    Article  CAS  Google Scholar 

  3. Wang JJ et al (2020) Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J Alloy Compd 819:153346. https://doi.org/10.1016/j.jallcom.2019.153346

    Article  CAS  Google Scholar 

  4. Wang W, Liu CJ, Wu W (2019) Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure. Catal Sci Technol 9:4162–4187. https://doi.org/10.1039/C9CY00499H

    Article  CAS  Google Scholar 

  5. Lacerda LCT et al (2016) Oxidative dehydration reaction of glycerol into acrylic acid: a first-principles prediction of structural and thermodynamic parameters of a bifunctional catalyst. Chem Phys Lett 651:161–167. https://doi.org/10.1016/j.cplett.2016.03.038

    Article  CAS  Google Scholar 

  6. Liu LC et al (2015) Bifunctional Mo3VOx/H4SiW12O40/Al2O3 catalysts for one-step conversion of glycerol to acrylic acid: catalyst structural evolution and reaction pathways. Applied Catalysis B-Environmental 174:1–12. https://doi.org/10.1016/j.apcatb.2015.02.032

    Article  CAS  Google Scholar 

  7. Martinez-Vargas DX et al (2019) Recent advances in bifunctional catalysts for the Fischer-Tropsch process: one-stage production of liquid hydrocarbons from syngas. Ind Eng Chem Res 58:15872–15901. https://doi.org/10.1021/acs.iecr.9b01141

    Article  CAS  Google Scholar 

  8. Weber JL et al (2020) Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catal Today 342:161–166. https://doi.org/10.1016/j.cattod.2019.02.002

    Article  CAS  Google Scholar 

  9. Zhang XW et al (2020) Amine-based CO2 capture aided by acid-basic bifunctional catalyst: advancement of amine regeneration using metal modified MCM-41. Chem Eng J 383:123077. https://doi.org/10.1016/j.cej.2019.123077

    Article  CAS  Google Scholar 

  10. Melero JA et al (2017) Efficient one-pot production of gamma-valerolactone from xylose over Zr-Al-Beta zeolite: rational optimization of catalyst synthesis and reaction conditions. Green Chem 19:5114–5121. https://doi.org/10.1039/C7GC01969F

    Article  CAS  Google Scholar 

  11. Zhang LX et al (2019) Transformation of corncob into furfural by a bifunctional solid acid catalyst. Biores Technol 276:60–64. https://doi.org/10.1016/j.biortech.2018.12.094

    Article  CAS  Google Scholar 

  12. Hsieh CT et al (2020) NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities. Applied Catalysis B-Environmental 267:118376. https://doi.org/10.1016/j.apcatb.2019.118376

    Article  CAS  Google Scholar 

  13. Kuang M et al (2017) CuCoOx/FeOOH core-shell nanowires as an efficient bifunctional oxygen evolution and reduction catalyst. ACS Energy Lett 2:2498–2505. https://doi.org/10.1021/acsenergylett.7b00835

    Article  CAS  Google Scholar 

  14. Li MZ et al (2020) Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts. Renewable Energy 147:916–923. https://doi.org/10.1016/j.renene.2019.09.064

    Article  CAS  Google Scholar 

  15. Deleplanque J, Dubois JF, Ueda W (2010) Production of acrolein and acrylic acid though dehydration and oxyhydration of glycerol with mixed oxide catalysis. Catalysis Today 157:351–358. https://doi.org/10.1016/j.cattod.2010.04.012

    Article  CAS  Google Scholar 

  16. Filho JBG et al  (2021) Selective visible-light-driven toxicity breakdown of nerve agent simulant methyl paraoxon over a photoactive nanofabric. Ap Cat B: Environmental 285:119774. https://doi.org/10.1016/j.apcatb.2020.119774

  17. Vernekar D, Jagadeesan D (2015) Tunable acid-base bifunctional catalytic activity of FeOOH in an orthogonal tandem reaction. Catal Sci Technol 5:4029–4038. https://doi.org/10.1039/C5CY00361J

    Article  CAS  Google Scholar 

  18. Chen PZ et al (2014) Ultrathin nanosheets of feroxyhyte: a new two-dimensional material with robust ferromagnetic behavior. Chem Sci 5:2251–2255. https://doi.org/10.1039/C3SC53303D

    Article  CAS  Google Scholar 

  19. Pereira MC et al (2011) Nanostructured delta-FeOOH: a novel photocatalyst for water splitting. J Mater Chem 21:10280–10282. https://doi.org/10.1039/C1JM11736J

    Article  CAS  Google Scholar 

  20. Liu B et al (2018) Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv Mater 30:1803144. https://doi.org/10.1002/adma.201803144

    Article  CAS  Google Scholar 

  21. Tavares TS (2020) Delta-FeOOH as support for immobilization peroxidase: optimization via a chemometric approach. Molecules 25:259. https://doi.org/10.3390/molecules25020259

  22. Oliveira LCA et al (2009) Nb-doped hematites for decomposition of isopropanol: evidence of surface reactivity by in situ CO adsorption. Applied Catalysis a-General 368:17–21. https://doi.org/10.1016/j.apcata.2009.08.001

    Article  CAS  Google Scholar 

  23. SUM Q S, et al (2007) Dehydration of methanol to dimethyl ether over Nb 2 O 5 and NbOPO 4 catalysts: microcalorimetric and FT-IR studies. Journalof Molecular Catalysis A: Chemical 2007(275):183–193. https://doi.org/10.1016/j.molcata.2007.06.008

    Article  CAS  Google Scholar 

  24. Pereira AF (2019) Development of technologies applied to the biodegradation of warfare nerve agents: theoretical evidence for asymmetric homogeneous catalysis. Chem Biol Interact 308:323–331. https://doi.org/10.1016/j.cbi.2019.06.007

  25. Lima LDA et al (2020) Room temperature selective conversion of aniline to azoxybenzene over an amorphous niobium oxyhydroxide supported on δ-FeOOH. Catal Today 344:118–123. https://doi.org/10.1016/j.cattod.2018.10.035

    Article  CAS  Google Scholar 

  26. Li X et al (2020) A high sensitivity background eliminated fluorescence sensing platform for hyaluronidase activity detection based on Si QDs/HA-delta-FeOOH nanoassembly. Biosensors & Bioelectronics 150:111928

    Article  CAS  Google Scholar 

  27. Wu T et al (2020) A highly sensitive and selective fluorescence biosensor for hepatitis C virus DNA detection based on delta-FeOOH and exonuclease III-assisted signal amplification. Talanta 209:120550

    Article  CAS  Google Scholar 

  28. Correa S et al (2016) Synthesis, structural characterization, and thermal properties of theoly(methylmethacrylate)/δ-FeOOH hybrid material: an experimental and theoretical study. J Nanomater 2462135. https://doi.org/10.1155/2016/2462135

  29. Khan I et al (2017) Two-dimensional magnetic semiconductor in feroxyhyte. ACS Appl Mater Interfaces 9:35368–35375. https://doi.org/10.1021/acsami.7b08499

    Article  CAS  PubMed  Google Scholar 

  30. Pinto ISX et al (2012) Nanostructured delta-FeOOH: an efficient Fenton-like catalyst for the oxidation of organics in water. Applied Catalysis B-Environmental 119:175–182. https://doi.org/10.1016/j.apcatb.2012.02.026

    Article  CAS  Google Scholar 

  31. Pires MD et al (2016) Experimental and theoretical study on the reactivity of maghemite doped with Cu2+ in oxidation reactions: structural and thermodynamic properties towards a Fenton catalyst. RSC Adv 6:80830–80839. https://doi.org/10.1039/C6RA11032K

    Article  CAS  Google Scholar 

  32. Hu J et al (2019) Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal 9:10705–10711. https://doi.org/10.1021/acscatal.9b03876

    Article  CAS  Google Scholar 

  33. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  34. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  35. Blochl PE (1994) Projector augmented-wave method. Physical Review B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 78:10062328. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  37. Drits VA, Sakharov BA, Manceau A (1993) Structure of feroxyhite as determined by simulation of X-ray-diffraction curves. Clay Miner 28:209–222. https://doi.org/10.1180/claymin.1993.028.2.03

    Article  CAS  Google Scholar 

  38. Sestu M et al (2015) Novel interpretation of the mean structure of feroxyhyte. J Solid State Chem 225:256–260. https://doi.org/10.1016/j.jssc.2015.01.003

    Article  CAS  Google Scholar 

  39. Tkatchenko A, Scheffler M (2009) Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005. https://doi.org/10.1103/PhysRevLett.102.073005

    Article  CAS  PubMed  Google Scholar 

  40. Yatom N, Toroker MC (2015) Hazardous doping for photo-electrochemical conversion: the case of Nb-doped Fe2O3 from first principles. Molecules 20:19900–19906. https://doi.org/10.3390/molecules201119668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pinto MB et al (2018) Unveiling the structural and electronic properties of the B-Nb2O5 surfaces and their interaction with H2O and H2O2. J Phys Chem C 122:6618–6628. https://doi.org/10.1021/acs.jpcc.7b11972

    Article  CAS  Google Scholar 

  42. Correa S et al (2021) Hybrid materials based on magnetic iron oxides with benzothiazole derivatives: a plausible potential spectroscopy probe. Int J Mol Sci 22:3980. https://doi.org/10.3390/ijms22083980

  43. Ishikawa T, Cai WY, Kandori K (1992) Characterization of the thermal-decomposition products of delta-FeOOH by Fourier-transform infrared-spectroscopy and N2 adsorption. Journal of the Chemical Society-Faraday Transactions 88:1173–1177. https://doi.org/10.1039/FT9928801173

    Article  CAS  Google Scholar 

  44. Eglitis RI et al (2015) Ab initio hybrid DFT calculations of BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (111) surfaces. Appl Surf Sci 358:556–562. https://doi.org/10.1016/j.apsusc.2015.08.010

    Article  CAS  Google Scholar 

  45. Simeonidis K et al (2019) Implementing nanoparticles for competitive drinking water purification. Environ Chem Lett 17:705–719. https://doi.org/10.1007/s10311-018-00821-5

    Article  CAS  Google Scholar 

  46. Cho DW et al (2018) Effect of Mn substitution on the oxidation/adsorption abilities of iron(III) oxyhydroxides. Clean Technol Environ Policy 20:2201–2208. https://doi.org/10.1007/s10098-018-1528-0

    Article  CAS  Google Scholar 

  47. Huang X, Ramadugu SK, Mason SE (2016) Surface-specific DFT plus U approach applied to alpha-Fe2O3(0001). J Phys Chem C 120:4919–4930. https://doi.org/10.1021/acs.jpcc.5b12144

    Article  CAS  Google Scholar 

  48. Rollmann G et al (2005) High-pressure characteristics of alpha-Fe2O3 using DFT plus U. Phase Transitions 78:251–258. https://doi.org/10.1080/01411590412331316546

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001. We are grateful for the support of Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We would also like to thank the Centro Nacional de Processamento de Alto Desempenhoem São Paulo (CENAPAD-SP) for the computational facilities.

Funding

The authors thank the Brazilian agencies “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) and “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) for their financial support. This study was supported by the Excellence Project UHK.

Author information

Authors and Affiliations

Authors

Contributions

V. S. V., T. C. R., and I. S. S. O. designed this study; L. C. T. L. and M. S. P. did computational experiments; T. C. S., A. A. de Castro, and S. C. did data interpretation; L. C. T. L., T. C. R., and I. S. S. O. wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Teodorico C. Ramalho.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection VIII Symposium on Electronic Structure and Molecular Dynamics – VIII SeedMol

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1989 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacerda, L.C.T., Pires, M.S., Oliveira, I.S.S. et al. Bulk and surface theoretical investigation of Nb-doped δ-FeOOH as a promising bifunctional catalyst. J Mol Model 27, 249 (2021). https://doi.org/10.1007/s00894-021-04864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04864-4

Keywords

Navigation