Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical study on noncovalent interaction of molecular tweezers by Zn(II) salphen-azo-crown ether triads receptor

  • 48 Accesses

Abstract

A novel zinc(II)-salphen-azo-benzo-15-crown-5 triad receptor was studied theoretically as ditopic recognition of hydrophobic amino acid. And density functional theory was used to investigate the Zn(II) salphen-crown ether complex (L1), complex L2 (L1 with the alkaline metal cation Na+), and the corresponding 1:1 sandwich complex (complex L with tryptophan). In this work, geometrical optimization was carried out using ωB97XD functional and def2-SVP basis set for all atoms. The absorption spectra and excited-states were calculated using time-dependent density functional theory and ωB97XD/def2-TZVP level. The absorption spectra data show some significantly shifts in the absorption band due to the present of Na+ or tryptophan. In addition, interfragment interactions between receptor L and tryptophan were analyzed in detail by Independent Gradient Model and topological properties of Bader’s atoms in molecules theory, which is found to contribute to forming the metal-ligand bonds, intermolecular H-bond, and van der Waals interaction in 1:1 sandwich complex. The above results demonstrate that the L2 complex is a ditopic receptor to be utilized to recognize amphiphilic molecule - tryptophan.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chen CW, Whitlock JHW (1978) Molecular tweezers: a simple model of bifunctional intercalation. J Am Chem Soc 100(15):4921–4922

  2. 2.

    Gianneschi NC, Cho SH, Nguyen ST (2004) Reversibly addressing an allosteric catalyst in situ: catalytic molecular tweezers. Angew Chem Int Ed 43(41):5503–5507

  3. 3.

    Li D, Cheng W, Li Y (2016) Catalytic hairpin assembly actuated DNA nanotweezer for logic gate building and sensitive enzyme-free biosensing of microRNAs. Anal Chem 88(15):7500–7506

  4. 4.

    Raman A, Augustine G, Ayyadurai N (2018) Photoswitchable azobenzene-rhodamine tweezers for biosensing of Al3+ ions. New J Chem 42(11):9300–9305

  5. 5.

    Schrader T, Bitan G, Klärner FG (2016) Molecular tweezers for lysine and arginine-powerful inhibitors of pathologic protein aggregation. J Chem Soc Chem Commun 52(76):11318–11334

  6. 6.

    Attar A, Ripoli C, Riccardi E (2012) Protection of primary neurons and mouse brain from Alzheimer’s pathology by molecular tweezers. Brain 135(12):3735–3748

  7. 7.

    Sinha S, Lopes DHJ, Du Z (2011) Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J Am Chem Soc 133(42):16958–16969

  8. 8.

    Petitjean A, Khoury RG, Kyritsakas N (2004) Dynamic devices, shape switching and substrate binding in ion-controlled nanomechanical molecular tweezers. J Am Chem Soc 126(21):6637–6647

  9. 9.

    Mbarek A, Moussa G, Chain JL (2019) Pharmaceutical applications of molecular tweezers, clefts and clips. Molecules 24(9):1803

  10. 10.

    Dougherty DA (1996) Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271(5246):163–168

  11. 11.

    Chen Y, Wang DX, Huang ZT (2011) Ion pair receptors based on anion–π interaction. J Chem Soc Chem Commun 47(28):8112–8114

  12. 12.

    Jeffrey GA, Saenger W (2012) Hydrogen bonding in biological structures. Springer Science & Business Media, Berlin

  13. 13.

    Sumerin V, Schulz F, Atsumi M (2008) Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. J Am Chem Soc 130(43):14117–14119

  14. 14.

    Mishra BK, Sathyamurthy N (2005) π-π interaction in pyridine. J Phys Chem A 109(1):6–8

  15. 15.

    Sinnokrot MO, Sherrill CD (2006) High-accuracy quantum mechanical studies of π-π interactions in benzene dimmers. J Phys Chem A 110(37):10656–10668

  16. 16.

    Israelachvili J, Pashley R (1982) The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300(5890):341

  17. 17.

    Hui JKH, Yu Z, MacLachlan MJ (2007) Supramolecular assembly of zinc salphen complexes: access to metal-containing gels and nanofibers. Angew Chem Int Ed 46(42):7980–7983

  18. 18.

    Salassa G, Castilla AM, Kleij AW (2011) Cooperative self-assembly of a macrocyclic Schiff base complex. J Chem Soc Dalton Trans 40(19):5236–5243

  19. 19.

    Doistau B, Tron A, Denisov SA (2014) Terpy(Pt–salphen)2 switchable luminescent molecular tweezers. Chem Eur J 20(48):15799–15807

  20. 20.

    Doistau B, Benda L, Cantin JL (2017) Six states switching of redox-active molecular tweezers by three orthogonal stimuli. J Am Chem Soc 139(27):9213–9220

  21. 21.

    Vagin SI, Reichardt R, Klaus S (2010) Conformationally flexible dimeric salphen complexes for bifunctional catalysis. J Am Chem Soc 132(41):14367–14369

  22. 22.

    Ren Y, Chen J, Qi C (2015) A new type of Lewis acid-base bifunctional M (salphen) (M= Zn, Cu and Ni) catalysts for CO2 fixation. Chem Cat Chem 7(10):1535–1538

  23. 23.

    Sankareswari VG, Vinod D, Mahalakshmi A (2014) Interaction of oxovanadium (IV)-salphen complexes with bovine serum albumin and their cytotoxicity against cancer. J Chem Soc Dalton Trans 43(8):3260–3272

  24. 24.

    Jiang N, Li SY, Xie SS (2014) Design, synthesis and evaluation of multifunctional salphen derivatives for the treatment of Alzheimer’s disease. Eur J Med Chem 87:540–551

  25. 25.

    Ali A, Kamra M, Roy S (2017) Enhanced G-quadruplex DNA stabilization and telomerase inhibition by novel fluorescein derived Salen and Salphen based Ni (II) and Pd (II) complexes. Bioconjug Chem 28(2):341–352

  26. 26.

    Terenzi A, Ducani C, Male L (2013) DNA interaction of CuII, NiII and ZnII functionalized salphen complexes: studies by linear dichroism, gel electrophoresis and PCR. J Chem Soc Dalton Trans 42(31):11220–11226

  27. 27.

    Zhong W, Gallivan JP, Zhang Y (1998) From ab initio quantum mechanics to molecular neurobiology: a cation–π binding site in the nicotinic receptor. PNAS 95(21):12088–12093

  28. 28.

    Xiu X, Puskar NL, Shanata JAP (2009) Nicotine binding to brain receptors requires a strong cation–π interaction. Nature 458(7237):534

  29. 29.

    Spiwok V, Lipovová P, Skálová T (2004) Role of CH/π interactions in substrate binding by Escherichia coli β-galactosidase. Carbohydr Res 339(13):2275–2280

  30. 30.

    Pike JD, Rosa DT, Coucouvanis D (2001) Lipophilic metal-salicylideneimine-crown ether hybrids-ditopic carriers in the facilitated transport of amphiphilic molecules across bulk liquid membranes. Eur J Inorg Chem 3:761–777

  31. 31.

    Suzuki L, Obata K, Anzai J (2000) Crown ether-tethered cyclodextrins: superiority of the secondary-hydroxy side modification in binding tryptophan. J Chem Soc Perkin Trans 2(8):1705–1710

  32. 32.

    Li D, Yang Y, Yang C (2014) Synthesis of cholate-based pyridinium receptor and its recognition toward L-tryptophan. Tetrahedron 70(6):1223–1229

  33. 33.

    Coucouvanis D, Rosa D, Pike J (2003) Recognition and transport of amphiphilic molecules by a new class of inorganic ditopic receptors. The synthesis of M-t Bu4-salphen-3n-cr-n complexes and their use (M = Mn, Fe, n = 6) in the transport of tryptophan and serotonin across bulk liquid membranes. C R Chimie 6(3):317–327

  34. 34.

    Li H, Zhang Y, Jia Z (2019) Theoretical design on molecular tweezers of sodium cyanide by zinc porphyrin-azo-crown ether triads receptor. J Phys Org Chem 32(8):e3963

  35. 35.

    Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

  36. 36.

    da Costa LM, Stoyanov SR, Gusarov S (2012) Density functional theory investigation of the contributions of π-π stacking and hydrogen-bonding interactions to the aggregation of model asphaltene compounds. Energy Fuel 26(5):2727–2735

  37. 37.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09 Versions D.01. Gaussian Inc. Wallingford CT

  38. 38.

    Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8(9):1057–1065

  39. 39.

    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

  40. 40.

    Ransil BJ (1961) Studies in molecular structure. IV Potential curve for the interaction of two helium atoms in single-configuration LCAO MO SCF approximation. J Chem Phys 34(6):2109–2118

  41. 41.

    Lefebvre C, Rubez G, Khartabil H (2017) Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys Chem Chem Phys 19(27):17928–17936

  42. 42.

    Lu T, Feiwu C (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

  43. 43.

    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

  44. 44.

    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press New York

  45. 45.

    Escudero-Adán EC, Benet-Buchholz J, Kleij AW (2009) Trapping of a four-coordinate zinc salphen complex inside a crystal matrix. Chem-Eur J 15(17):4233–4237

  46. 46.

    Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218(4574):747–754

  47. 47.

    Espinosa E, Molins E, Lecomte C (1999) Experimental electron density overlapping in hydrogen bonds: topology vs. Energetics Chem Phys Lett 300(5–6):745–748

  48. 48.

    Espinosa E, Alkorta I, Elguero J (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F-Y systems. J Chem Phys 117(12):5529–5542

  49. 49.

    Bianchi R, Gervasio G, Marabello D (2000) Experimental electron density analysis of Mn2(CO)10: metal-metal and metal-ligand bond characterization. Inorg Chem 39(11):2360–2366

  50. 50.

    Gholivand K, Molaei F, Thibonnet J (2015) A novel Zn (II) complex of N-nicotinyl phosphoramide: combined experimental and computational studies. J Mol Struct 1092:130–136

  51. 51.

    Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122(45):11154–11161

Download references

Author information

Correspondence to Xueye Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zheng, X., Jia, Z. et al. Theoretical study on noncovalent interaction of molecular tweezers by Zn(II) salphen-azo-crown ether triads receptor. J Mol Model 26, 39 (2020). https://doi.org/10.1007/s00894-020-4301-3

Download citation

Keywords

  • Density functional theory
  • Molecular tweezers
  • Tryptophan
  • Zn(II) salphen-crown ether complex