Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Dynamic fluxionality of ternary Mg2BeB8 cluster: a nanocompass

  • 50 Accesses

Abstract

A series of fluxional planar boron and boron-based binary clusters have evoked considerable interest of chemists. Here we propose the first ternary nanocompass cluster Mg2BeB8 based on quantum chemical calculations. It possesses a half-sandwich structure with a Mg2 dimer as the needle and a BeB8 molecular wheel as baseplate, which is the global minimum on the potential energy surface. Mg2BeB8 can be viewed as a nanocompass, whose Mg2 needle can rotate freely around the BeB8 baseplate at 300 K. The calculated rotation barrier is only 0.1 kcal mol−1 at the single-point CCSD(T)/6-311+G(d)//PBE0/6-311+G(d) level. Chemical bonding analyses indicate that Mg2BeB8 is a charge-transfer complex [Mg2]2+[BeB8]2− in nature. There is localized covalent Mg–Mg bond for [Mg2]2+ needle, while there are three delocalized π and three delocalized σ bonds for [BeB8]2− baseplate. The ionic bonding between the [Mg2]2+ needle and the 6π/6σ double aromatic [BeB8]2− baseplate makes the Mg2BeB8 cluster fluxional. The current results suggest that altering the baseplate is an effective way to enrich the nanocompass’ family.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Joachim C, Rapenne G (2013) Molecule concept nanocars: chassis, wheels, and motors? ACS Nano 7:11–14

  2. 2.

    Shirai Y, Morin JF, Sasaki T, Guerrero JM, Tour JM (2006) Recent progress on nanovehicles. Chem Soc Rev 35:1043–1055

  3. 3.

    Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed 42:6004–6008

  4. 4.

    Zhai HJ, Kiran B, Li J, Wang LS (2003) Hydrocarbon analogues of boron clusters-planarity aromaticity and antiaromaticity. Nat Mater 2:827–833

  5. 5.

    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS (2006) All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord Chem Rev 250:2811–2866

  6. 6.

    Zubarev DY, Boldyrev AI (2007) Comprehensive analysis of chemical bonding in boron clusters. J Comput Chem 28:251–268

  7. 7.

    Huang W, Sergeeva AP, Zhai H-J, Averkiev BB, Wang L-S, Boldyrev AI (2010) A concentric planar doubly π-aromatic B19 cluster. Nat Chem 2:202–206

  8. 8.

    Sergeeva AP, Popov IA, Piazza ZA, Li WL, Romanescu C, Wang LS, Boldyrev AI (2014) Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc Chem Res 47:1349–1358

  9. 9.

    Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Observation of an all-boron fullerene. Nat Chem 6:727–731

  10. 10.

    Sergeeva AP, Piazza ZA, Romanescu C, Li WL, Boldyrev AI, Wang LS (2012) B22 and B23 : all-boron analogues of anthracene and phenanthrene. J Am Chem Soc 134:18065–18073

  11. 11.

    Tai TB, Havenith RW, Teunissen JL, Dok AR, Hallaert SD, Nguyen MT, Ceulemans A (2013) Particle on a boron disk: ring currents and disk aromaticity in B20 2–. Inorg Chem 52:10595–10600

  12. 12.

    Li WL, Zhao YF, Hu HS, Li J, Wang LS (2014) B30 -: a quasiplanar chiral boron cluster. Angew Chem Int Ed 53:5540–5545

  13. 13.

    Li WL, Chen Q, Tian WJ, Bai H, Zhao YF, Hu HS, Li J, Zhai HJ, Li SD, Wang LS (2014) The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J Am ChemSoc 136:12257–12260

  14. 14.

    Piazza ZA, Hu HS, Li WL, Zhao YF, Li J, Wang LS (2014) Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat Commun 5:3113–3117

  15. 15.

    Erhardt S, Frenking G, Chen ZF, Schleyer PR (2005) Aromatic boron wheels with more than one carbon atom in the center: C2B8, C3B9 3+, and C5B11 +. Angew Chem Int Ed 44:1078–1082

  16. 16.

    Wu YB, Yuan CX, Yang P (2006) The C6B12 2− complex: a beautiful molecular wheel containing a ring of six planar tetracoordinate carbon atoms. THEOCHEM J Mol Struct 765:35–38

  17. 17.

    Jiménez-Halla JOC, Islas R, Heine T, Merino G (2010) B19 : an aromatic wankel motor. Angew Chem Int Ed 49:5668–5671

  18. 18.

    Martínez-Guajardo G, Sergeeva AP, Boldyrev AI, Heine T, Ugalde JM, Merino G (2011) Unravelling phenomenon of internal rotation in B13 + through chemical bonding analysis. Chem Commun 47:6242–6244

  19. 19.

    Moreno D, Pan S, Zeonjuk LL, Islas R, Osorio E, Martinez-Guajardo G, Chattaraj PK, Heine T, Merino G (2014) B18 2−: a quasi-planar bowl member of the wankel motor family. ChemCommun 50:8140–8143

  20. 20.

    Tai TB, Ceulemans A, Nguyen MT (2012) Disk aromaticity of the planar and fluxional anionic boron clusters B20 −/2−. Chem Eur J 18:4510–4512

  21. 21.

    Wang YJ, Zhao XY, Chen Q, Zhai HJ, Li SD (2015) B11 : a moving subnanoscale tank tread. Nanoscale 7:16054–16060

  22. 22.

    Wang YJ, You XR, Chen Q, Feng LY, Wang K, Ou T, Zhao XY, Zhai HJ, Li SD (2016) Chemical bonding and dynamic fluxionality of a B15 + cluster: a nanoscale double-axle tank tread. Phys Chem Chem Phys 18:15774–15782

  23. 23.

    Jalife S, Liu L, Pan S, Cabellos JL, Osorio E, Lu C, Heine T, Donald KJ, Merino G (2016) Dynamical behavior of boron clusters. Nanoscale 8:17639–17644

  24. 24.

    Yang YG, Jia DM, Wang YJ, Zhai HJ, Man Y, Li SD (2017) A universal mechanism of the planar boron rotors B11 , B13 +, B15 +, and B19 : inner wheels rotating in pseudo-rotating outer bearings. Nanoscale 9:1443–1448

  25. 25.

    Fagiani MR, Song X, Petkov P, Debnath S, Gewinner S, Schöllkopf W, Heine T, Fielicke A, Asmis KR (2017) Structure and fluxionality of B13 + probed by infrared photodissociation spectroscopy. Angew Chem Int Ed 56:501–504

  26. 26.

    Pan S, Barroso J, Jalife S, Heine T, Asmis KR, Merino G (2019) Fluxional boron clusters: from theory to reality. Acc Chem Res 52:2732–2744

  27. 27.

    Liu L, Moreno D, Osorio E, Castro AC, Pan S, Chattaraj PK, Heine T, Merino G (2016) Structure and bonding of IrB12 : converting a rigid boron B12 platelet to a Wankel motor. RSC Adv 6:27177–27182

  28. 28.

    Wang YJ, Feng LY, Zhai HJ (2019) Starting a subnanoscale tank tread: dynamic fluxionality of boron-based B10Ca alloy cluster. Nanoscale Adv 1:735–745

  29. 29.

    Li WL, Jian T, Chen X, Li HR, Chen TT, Luo XM, Li SD, Li J, Wang LS (2017) Observation of a metal-centered B2-Ta@B18 tubular molecular rotor and a perfect Ta@B20 boron drum with the record coordination number of twenty. Chem Commun 53:1587–1590

  30. 30.

    Guo JC, Feng LY, Wang YJ, Jalife S, Vásquez-Espinal A, Cabellos JL, Pan S, Merino G, Zhai HJ (2017) Coaxial triple-layered versus helical Be6B11 clusters: dual structural fluxionality and multifold aromaticity. Angew Chem Int Ed 56:10174–10177

  31. 31.

    Feng LY, Guo JC, Li PF, Zhai HJ (2018) Boron-based binary Be6B10 2− cluster: three-layered aromatic sandwich, electronic transmutation, and dynamic structural fluxionality. Phys Chem Chem Phys 20:22719–22729

  32. 32.

    Wang YJ, Feng LY, Guo JC, Zhai HJ (2017) Dynamic Mg2B8 cluster: a nanoscale compass. Chem Asian J 12:2899–2903

  33. 33.

    Sergeeva AP, Averkiev BB, Zhai HJ, Boldyrev AI, Wang LS (2011) All-boron analogues of aromatic hydrocarbons: B17 and B18 . J Chem Phys 134:224304

  34. 34.

    Saunders M (2004) Stochastic search for isomers on a quantum mechanical surface. J Comput Chem 25:621–626

  35. 35.

    Bera PP, Sattelmeyer KW, Saunders M, Schaefer III HF, Schleyer PR (2006) Mindless chemistry. J Phys Chem A 110:4287–4290

  36. 36.

    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

  37. 37.

    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

  38. 38.

    Purvis III GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910–1918

  39. 39.

    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (2013) A fifth-order perturbation comparison of electron correlation theories (reprinted from chemical physics letters). Chem Phys Lett 589:37–40

  40. 40.

    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

  41. 41.

    Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217

  42. 42.

    Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

  43. 43.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT

  44. 44.

    Dennington R, Keith T, Millam J (2009) Gaussview, version 5. Semichem Inc., Shawnee Mission, KS

  45. 45.

    Pu ZF, Ge MF, Li QS (2010) MB8 2– (M = Be, Mg, Ca, Sr, and Ba): planar octacoordinate alkaline earth metal atoms enclosed by boron rings. Sci China Chem 53:1737–1745

  46. 46.

    Green SP, Jones C, Stasch A (2007) Stable magnesium(i) compounds with Mg-Mg bonds. Science 318:1754–1757

  47. 47.

    Liu Y, Li S, Yang X, Yang P, Wu B (2009) Magnesium− magnesium bond stabilized by a doubly reduced α-diimine: synthesis and structure of [K (THF)3]2[LMg− MgL] (L=[(2, 6-iPr2C6H3)NC(Me)]2 2−). J Am Chem Soc 131:4210–4211

  48. 48.

    Bonyhady SJ, Collis D, Frenking G, Holzmann N, Jones C, Stasch A (2010) Synthesis of a stable adduct of dialane (4)(Al2H4) via hydrogenation of a magnesium (I) dimer. NatChem 2:865

  49. 49.

    Boutland AJ, Dange D, Stasch A, Maron L, Jones C (2016) Two-coordinate magnesium(I) dimers stabilized by super bulky amido ligands. Angew Chem Int Ed 55:9239–9243

  50. 50.

    Schleyer PR, Maerker C, Dransfeld A, Jiao HJ, Hommes NJRV (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21873058), the Natural Science Foundation of Shanxi Province (201701D121033), and the Fund for Shanxi “1331 Project” Key Subjects Construction.

Author information

Correspondence to Jin-Chang Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1327 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Guo, J. Dynamic fluxionality of ternary Mg2BeB8 cluster: a nanocompass. J Mol Model 26, 30 (2020). https://doi.org/10.1007/s00894-020-4292-0

Download citation

Keywords

  • Nanocompass
  • Half sandwich
  • Global minimum
  • Dynamic fluxionality
  • Chemical bonding
  • Double aromaticity