Skip to main content

Advertisement

Log in

Electrode surface modification of graphene-MnO2 supercapacitors using molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, molecular dynamics (MD) simulations have been performed to explore the variation of ion density and electric potential due to electrode surface modification. Two different surface morphologies, having planer and slit pore with different conditions of surface charge, have been studied for graphene-MnO2 surface using LAMMPS. For different pore widths, the concentration of ions in the double layer is observed to be very low when the surface of the graphene-MnO2 electrode is charged. With a view to identify the optimal pore size for the simulation domain considered, three different widths for the nano-slit type pores and the corresponding ion-ion interactions are examined. Though this effect is negligible for pores with 9.23 and 3.55 Å widths, a considerable increase in the ionic concentration within the 7.10 Å pores is observed when the electrode is kept neutral. The edge region of these nano-slit pores leads to effective energy storage by promoting ion separation and a significantly higher charge accumulation is found to occur on the edges compared to the basal planes. For the simulation domain of the present study, partition coefficient is maximum for a pore size of 7.10 Å, indicating that the ions’ penetration and movement into nano-slit pores are most favorable for this optimum pore size for MnO2-graphene electrodes with aqueous NaCl electrolyte.

The importance of understanding the commercial feasibility of supercapacitor material has made qualitatively predicting the optimized electrode structure one of the main targets of energy related researches. While great progress has been made in recent years, a coherent theoretical picture of the optimized electrode structure remains elusive. This article discusses the most favorable design of supercapacitor electrode for ion-electrode interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    PubMed  CAS  Google Scholar 

  2. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science. 321(5889):651–652

    PubMed  CAS  Google Scholar 

  3. Zheng JP (2005) Theoretical energy density for electrochemical capacitors with intercalation electrodes. J Electrochem Soc 152(9):A1864–A1869

    CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric Field effect in atomically thin carbon films. Science. 306(5696):666–669

    PubMed  CAS  Google Scholar 

  5. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    PubMed  CAS  Google Scholar 

  6. Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4(8):505–509

    PubMed  CAS  Google Scholar 

  7. Kuamit T, Ratanasak M, Rungnim C, Parasuk V (2017) Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes. J Mol Model 23(12):355

    PubMed  Google Scholar 

  8. Herath D, Dinadayalane T (2017) Computational investigation of double nitrogen doping on graphene. J Mol Model 24(1):26

    PubMed  Google Scholar 

  9. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850

    PubMed  CAS  Google Scholar 

  10. Liu R, Wen D, Zhang X, Wang D, Yang Q, Yuan B, Lü W (2018) Three-dimensional reduced-graphene/MnO2 prepared by plasma treatment as high-performance supercapacitor electrodes. Mater Res Express 5(6):065504

    Google Scholar 

  11. Jaggi N, Sharma D, Sharma P (2016) MnO2/PVP/MWCNT hybrid nano composites as electrode materials for high performance supercapacitor. Mater Res Express 3(10):105503

    Google Scholar 

  12. Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J (2006) MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J Phys Chem B 110(12):6015–6019

    PubMed  CAS  Google Scholar 

  13. Liang M, Luo B, Zhi L (2009) Application of graphene and graphene-based materials in clean energy-related devices. Int J Energy Res 33(13):1161–1170

    CAS  Google Scholar 

  14. Chmiola J, Largeot C, Taberna P-L, Simon P, Gogotsi Y (2008) Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew Chem Int Ed 47(18):3392–3395

    CAS  Google Scholar 

  15. Alibalazadeh M, Foroutan M (2015) Specific distributions of anions and cations of an ionic liquid through confinement between graphene sheets. J Mol Model 21(7):168

    PubMed  Google Scholar 

  16. Feng G, Qiao R, Huang J, Sumpter BG, Meunier V (2010) Atomistic insight on the charging energetics in subnanometer pore supercapacitors. J Phys Chem C 114(41):18012–18016

    CAS  Google Scholar 

  17. Yang H, Zhang X, Yang J, Bo Z, Hu M, Yan J, Cen K (2017) Molecular origin of electric double-layer capacitance at multilayer graphene edges. J Phys Chem Lett 8(1):153–160

    PubMed  CAS  Google Scholar 

  18. Yang H, Yang J, Bo Z, Zhang S, Yan J, Cen K (2016) Edge effects in vertically-oriented graphene based electric double-layer capacitors. J Power Sources 324:309–316

    CAS  Google Scholar 

  19. Yike H, Xiaohong L, Shu L, Tianying Y (2016) Development of mean-field electrical double layer theory. Chinese Physics B 25(1):016801

    Google Scholar 

  20. Wang Z, Yang Y, Olmsted DL, Asta M, Laird BB (2014) Evaluation of constant potential method in simulating electric double-layer capacitors. J Chem Phys 141(18):184102

    PubMed  Google Scholar 

  21. Noh C, Jung Y (2019) Understanding the charging dynamics of an ionic liquid electric double layer capacitor via molecular dynamics simulations. Phys Chem Chem Phys 21(13):6790–6800

    PubMed  CAS  Google Scholar 

  22. Jiang G, Cheng C, Li D, Liu JZ (2016) Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes. Nano Res 9(1):174–186

    CAS  Google Scholar 

  23. Rajput NN, Monk J, Singh R, Hung FR (2012) On the influence of pore size and pore loading on structural and dynamical heterogeneities of an ionic liquid confined in a slit nanopore. J Phys Chem C 116(8):5169–5181

    CAS  Google Scholar 

  24. Salemi S, Akbarzadeh H, Abdollahzadeh S (2016) Nano-confined ionic liquid [emim][PF6] between graphite sheets: a molecular dynamics study. J Mol Liq 215:512–519

    CAS  Google Scholar 

  25. Chai Y, Li Z, Wang J, Mo Z, Yang S (2019) Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors. J Alloys Compd 775:1206–1212

    CAS  Google Scholar 

  26. Striolo A (2011) From interfacial water to macroscopic observables: a review. Adsorpt Sci Technol 29(3)

  27. Kalluri RK, Konatham D, Striolo A (2011) Aqueous NaCl solutions within charged carbon-slit pores: partition coefficients and density distributions from molecular dynamics simulations. J Phys Chem C 115(28):13786–13795

    CAS  Google Scholar 

  28. Jorgensen WL (1981) Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J Am Chem Soc 103(2):335–340

    CAS  Google Scholar 

  29. Alexiadis A, Kassinos S (2008) Molecular simulation of water in carbon nanotubes. Chem Rev 108(12):5014–5034

    PubMed  CAS  Google Scholar 

  30. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin§M. Karplus D. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    PubMed  CAS  Google Scholar 

  31. Miyamoto S, Kollman PA (1992) Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13(8):952–962

    CAS  Google Scholar 

  32. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    CAS  Google Scholar 

  33. Allen MP, Allen MP, Tildesley DJ, Tildesley DJ (1989) Computer simulation of liquids. Clarendon press 412 p

  34. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Google Scholar 

  35. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    CAS  Google Scholar 

  36. Wander MCF, Shuford KL (2010) Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon. J Phys Chem C 114(48):20539–20546

    CAS  Google Scholar 

  37. Panteva MT, Giambaşu GM, York DM (2015) Force field for Mg2+, Mn2+, Zn2+ and Cd2+ ions that have balanced interactions with nucleic acids. J Phys Chem B 119(50):15460–15470

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105(43):9954–9960

    CAS  Google Scholar 

  39. Chen M, Li S, Feng G (2017) The influence of anion shape on the electrical double layer microstructure and capacitance of ionic liquids-based supercapacitors by molecular simulations. Molecules. 22(2):241

    PubMed Central  Google Scholar 

  40. Li S, Feng G, Cummings PT (2014) Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study. J Phys Condens Matter 26(28):284106

    PubMed  Google Scholar 

  41. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon. 48(13):3825–3833

    CAS  Google Scholar 

  42. Lian C, Liu K, Van Aken KL, Gogotsi Y, Wesolowski DJ, Liu HL, Jiang DE, Wu JZ (2016) Enhancing the capacitive performance of electric double-layer capacitors with ionic liquid mixtures. ACS Energy Lett 1(1):21–26

    CAS  Google Scholar 

  43. Szewczyk A, Sikula J, Sedlakova V, Majzner J, Sedlak P, Kuparowitz T (2016) Voltage dependence of supercapacitor capacitance. Metrol Meas Syst 23(3):403–411

    Google Scholar 

  44. Vatamanu J, Cao L, Borodin O, Bedrov D, Smith GD (2011) On the influence of surface topography on the electric double layer structure and differential capacitance of graphite/ionic liquid interfaces. J Phys Chem Lett 2(17):2267–2272

    CAS  Google Scholar 

  45. Kalluri RK, Biener MM, Suss ME, Merrill MD, Stadermann M, Santiago JG, Baumann TF, Biener J, Striolo A (2013) Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Phys Chem Chem Phys 15(7):2309–2320

    PubMed  CAS  Google Scholar 

  46. Xi YH, Liu Z, Ji J, Wang Y, Faraj Y, Zhu Y, Xie R, Ju XJ, Wang W, Lu X, Chu LY (2018) Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. J Membr Sci 550:208–218

    CAS  Google Scholar 

  47. Yuan W, Zhou Y, Li Y, Li C, Peng H, Zhang J, Liu Z, Dai L, Shi G (2013) The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep 3:2248

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by providing allocations of computing by the Institute of Information and Communication Technology (IICT), BUET and by the Post Graduate Lab (Department of Mechanical Engineering, BUET). The authors declare no competing financial interest.

Funding

The project is partially funded by Committee for Advanced Studies and Research (CASR), BUET.

Author information

Authors and Affiliations

Authors

Contributions

This publication is a part of M.Sc. thesis of Musanna Galib under supervision of Md. Ashiqur Rahman and Shakhawat H. Firoz with suggestions and guidelines from Mohammad Mozammal Hosen, Joyanta K. Saha, Md. Mominul Islam. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Shakhawat H. Firoz or Md. Ashiqur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Code is not available due to privacy restrictions.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galib, M., Hosen, M.M., Saha, J.K. et al. Electrode surface modification of graphene-MnO2 supercapacitors using molecular dynamics simulations. J Mol Model 26, 251 (2020). https://doi.org/10.1007/s00894-020-04483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04483-5

Keywords

Navigation