Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular dynamics and binding energy analysis of Vatairea guianensis lectin: a new tool for cancer studies

Abstract

The Tn antigen is an epitope containing N-acetyl-D-galactosamine present in the extracellular matrix of some carcinoma cells in humans, and it is often used as a biomarker. Lectins are proteins capable of binding to carbohydrates and can be used as a molecular tool to recognize antigens and to differentiate cancer cells from normal cells. In this context, the present work aimed to characterize the interaction of Vatairea guianensis seed lectin with N-acetyl-D-galactosamine and the Tn antigen by molecular dynamics and molecular mechanics/Poisson–Boltzmann solvent-accessible surface area analysis. This study revealed new interacting residues not previously identified in static analysis of the three-dimensional structures of Vatairea lectins, as well as the configuration taken by the carbohydrate recognition domain, as it interacts with each ligand. During the molecular dynamics simulations, Vatairea guianensis lectin was able to bind stably to Tn antigen, which, as seen previously for other lectins, enables its use in cancer research, diagnosis, and therapy. This work further demonstrates the efficiency of bioinformatics in lectinology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15:540–555. https://doi.org/10.1038/nrc3982

  2. 2.

    Tabassum DP, Polyak K (2015) Tumorigenesis: it takes a village. Nat. Rev. Cancer 15:473–483. https://doi.org/10.1038/nrc3971

  3. 3.

    Peumans WJ, Van Damme E (1995) Lectins as plant defense proteins. Plant Physiol. 109:347–352. https://doi.org/10.1104/pp.109.2.347

  4. 4.

    Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem. 113:236–247. https://doi.org/10.1016/j.acthis.2010.02.004

  5. 5.

    Hashim OH, Jayapalan JJ, Lee CS (2017) Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ 2017:1–30. https://doi.org/10.7717/peerj.3784

  6. 6.

    Fu C, Zhao H, Wang Y et al (2016) Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. Hla 88:275–286. https://doi.org/10.1111/tan.12900

  7. 7.

    Poiroux G, Barre A, van Damme EJM et al (2017) Plant lectins targeting O-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy. Int. J. Mol 18. https://doi.org/10.3390/ijms18061232

  8. 8.

    Ju T, Otto VI, Cummings RD (2011) The Tn antigena-structural simplicity and biological complexity. Angew. Chem. Int. Ed. 50:1770–1791. https://doi.org/10.1002/anie.201002313

  9. 9.

    Julien S, Videira PA, Delannoy P (2012) Sialyl-Tn in cancer: (how) did we miss the target? Biomolecules 2:435–466. https://doi.org/10.3390/biom2040435

  10. 10.

    Lubkowski J, Durbin SV, Silva MCC et al (2017) Structural analysis and unique molecular recognition properties of a Bauhinia forficata lectin that inhibits cancer cell growth. FEBS J. 284:429–450. https://doi.org/10.1111/febs.13989

  11. 11.

    Kulkarni KA, Sinha S, Katiyar S et al (2005) Structural basis for the specificity of basic winged bean lectin for the Tn-antigen: a crystallographic, thermodynamic and modelling study. FEBS Lett. 579:6775–6780. https://doi.org/10.1016/j.febslet.2005.11.011

  12. 12.

    Babino A, Tello D, Rojas A et al (2003) The crystal structure of a plant lectin in complex with the Tn antigen. FEBS Lett. 536:106–110. https://doi.org/10.1016/S0014-5793(03)00037-1

  13. 13.

    Madariaga D, Martinez-Sáez N, Somovilla VJ et al (2015) Detection of tumor-associated glycopeptides by lectins: the peptide context modulates carbohydrate recognition. ACS Chem. Biol. 10:747–756. https://doi.org/10.1021/cb500855x

  14. 14.

    Sousa BL, Silva Filho JC, Kumar P et al (2015) High-resolution structure of a new Tn antigen-binding lectin from Vatairea macrocarpa and a comparative analysis of Tn-binding legume lectins. Int. J. Biochem. Cell Biol. 59:103–110. https://doi.org/10.1016/j.biocel.2014.12.002

  15. 15.

    Sousa BL, Silva-Filho JC, Kumar P et al (2016) Structural characterization of a Vatairea macrocarpa lectin in complex with a tumor-associated antigen: a new tool for cancer research. Int. J. Biochem. Cell Biol. 72:27–39. https://doi.org/10.1016/j.biocel.2015.12.016

  16. 16.

    Marques GFOGFO, Osterne VJSVJS, Almeida LMLM et al (2017) Contribution of the carbohydrate-binding ability of Vatairea guianensis lectin to induce edematogenic activity. Biochimie 140:58–65. https://doi.org/10.1016/j.biochi.2017.06.008

  17. 17.

    Silva HC, Bari AU, Rocha BAM et al (2013) Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties. J Mol Recognit 26. https://doi.org/10.1002/jmr.2289

  18. 18.

    Laskowski MW, MacArthur MW, Moss DS et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26:283–291. https://doi.org/10.1107/S0021889892009944

  19. 19.

    Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350. https://doi.org/10.1093/bioinformatics/btq662

  20. 20.

    Benkert P, Tosatto SCE, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins Struct. Funct. Genet. 71:261–277. https://doi.org/10.1002/prot.21715

  21. 21.

    Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res. 37:510–514. https://doi.org/10.1093/nar/gkp322

  22. 22.

    Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267:727–748. https://doi.org/10.1006/jmbi.1996.0897

  23. 23.

    Eldridge MD, Murray CW, Auton TR et al (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 11:425–445. https://doi.org/10.1023/A:1007996124545

  24. 24.

    Case DA, Ben-Shalom IY, Brozell SR et al (2018) AMBER 2018. University of California, San Francisco

  25. 25.

    Lee J, Cheng X, Swails JM et al (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12:405–413. https://doi.org/10.1021/acs.jctc.5b00935

  26. 26.

    Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81:511–519. https://doi.org/10.1063/1.447334

  27. 27.

    Hoover WG (1985) Canonical dynamics—equilibrium phase-space distributions. pdf. 31:1695–1697

  28. 28.

    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52:7182–7190. https://doi.org/10.1063/1.328693

  29. 29.

    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

  30. 30.

    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089–10092. https://doi.org/10.1063/1.464397

  31. 31.

    Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9:3084–3095. https://doi.org/10.1021/ct400341p

  32. 32.

    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

  33. 33.

    Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discovery 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

  34. 34.

    Miller BR, McGee TD, Swails JM et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8:3314–3321. https://doi.org/10.1021/ct300418h

  35. 35.

    Xue J, Huang X, Zhu Y (2019) Using molecular dynamics simulations to evaluate active designs of cephradine hydrolase by molecular mechanics/Poisson-Boltzmann surface area and molecular mechanics/generalized Born surface area methods. RSC Adv. 9:13868–13877. https://doi.org/10.1039/c9ra02406a

Download references

Acknowledgments

David Martin helped with the English editing of the manuscript.

Funding

This research was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP); Nascimento KS and Cavada BS are senior investigators of CNPq/Brazil.

Author information

Correspondence to Benildo Sousa Cavada or Kyria Santiago Nascimento.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 497 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cavada, B.S., Osterne, V.J.S., Pinto-Junior, V.R. et al. Molecular dynamics and binding energy analysis of Vatairea guianensis lectin: a new tool for cancer studies. J Mol Model 26, 22 (2020). https://doi.org/10.1007/s00894-019-4281-3

Download citation

Keywords

  • Tn antigen
  • Cancer
  • Vatairea guianensis
  • Lectin
  • Molecular dynamics