Advertisement

Screening of functional monomers and solvents for the molecular imprinting of paclitaxel separation: a theoretical study

  • Lingling Wang
  • Fengjian Yang
  • Xiuhua ZhaoEmail author
  • Yuanzuo LiEmail author
Original Paper
  • 43 Downloads

Abstract

The interactions between the template molecule paclitaxel (PTX) and seven functional monomers containing methacrylic acid (MA), acrolein (AC), 4-vinylbenzoic acid (4VA), acrylonitrile (AN), 2-vinylpyridine (2VP), 2,6-bisacrylamide pyridine (BAP) and methyl methacrylate (MM) were systematically investigated adopting the density functional theory (DFT) method. Moreover, the different binding sites on PTX and solvents embracing chloroform, acetone, ethanol, methanol, and acetonitrile were considered. The calculated solvent energies (ΔEsolvent) and template-monomer binding energies (ΔEb) suggest that the chloroform is the most suitable solvent for the molecular imprinting reaction of PTX among the studied five solvents. Furthermore, from the obtained ΔEb, we can find that the monomer 4VA combining with PTX in the form of the specific intermolecular hydrogen bonds would present the most stable structure among the investigated monomers. These results can provide valuable theoretical guidance for the efficient extraction of PTX by the molecular imprinting technique in experiments.

Graphical abstracts

Keywords

Paclitaxel Molecular imprinted polymer Solvent effects Binding sites Density functional theory 

Notes

Funding information

This work was supported by the Fundamental Research Funds for the Central Universities (2572018AA21) and the Excellent Youth Foundation of Heilongjiang Scientific Committee (No. JC2018005).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

894_2019_4277_MOESM1_ESM.docx (4.7 mb)
ESM1 (DOCX 4.65 mb)

References

  1. 1.
    Chen LX, Wang XY, Lu WH, Wu XQ, Li JH (2016) Molecular imprinting: perspectives and applications. Chem. Soc. Rev. 45(8):2137–2211.  https://doi.org/10.1039/c6cs00061d CrossRefPubMedGoogle Scholar
  2. 2.
    Pan JM, Chen W, Ma Y, Pan GQ (2018) Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 47(15):5574–5587.  https://doi.org/10.1039/c7cs00854f CrossRefPubMedGoogle Scholar
  3. 3.
    Bompart M, Goto A, Wattraint O, Sarazin C, Tsujii Y, Gonzato C, Haupt K (2015) Molecularly imprinted polymers by reversible chain transfer catalysed polymerization. Polymer 78:31–36.  https://doi.org/10.1016/j.polymer.2015.09.060 CrossRefGoogle Scholar
  4. 4.
    Zhang HQ (2014) Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polymer 55(3):699–714.  https://doi.org/10.1016/j.polymer.2013.12.064 CrossRefGoogle Scholar
  5. 5.
    Mofrad S, Naeimpoor F, Hejazi P, Nematollahzadeh A (2016) Synthesis of lysozyme imprinted column with macroporous structure and enhanced selectivity: utilization of cryogelation technique and electrostatic functional monomers. J. Appl. Polym. Sci. 133(3):42880.  https://doi.org/10.1002/app.42880 CrossRefGoogle Scholar
  6. 6.
    Wu LQ, Zhu KC, Zhao WP, Li YZ (2005) Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Anal. Chim. Acta 549(1–2):39–44.  https://doi.org/10.1016/j.aca.2005.06.009 CrossRefGoogle Scholar
  7. 7.
    Vasapollo G, Del Sole R, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly imprinted polymers: present and future prospective. Int. J. Mol. Sci. 12(9):5908–5945.  https://doi.org/10.3390/ijms12095908 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD (2013) Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal. Chem. 85(24):11944–11951.  https://doi.org/10.1021/ac402848x CrossRefPubMedGoogle Scholar
  9. 9.
    Wei YB, Zeng Q, Hu Q, Wang M, Tao J, Wang LS (2018) Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel. Biosens. Bioelectron. 99:136–141.  https://doi.org/10.1016/j.bios.2017.07.049 CrossRefPubMedGoogle Scholar
  10. 10.
    Ogunlaja AS, Coombes MJ, Torto N, Tshentu ZR (2014) The adsorptive extraction of oxidized sulfur-containing compounds from fuels by using molecularly imprinted chitosan materials. React. Funct. Polym. 81:61–76.  https://doi.org/10.1016/j.reactfunctpolym.2014.04.006 CrossRefGoogle Scholar
  11. 11.
    Terracina JJ, Bergkvist M, Sharfstein ST (2016) Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers. J. Mol. Model. 22(6):139.  https://doi.org/10.1007/s00894-016-3005-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Dai ZQ, Liu JB, Tang SS, Wang Y, Wang YM, Jin RF (2015) Optimization of enrofloxacin-imprinted polymers by computer-aided design. J. Mol. Model. 21(11):290.  https://doi.org/10.1007/s00894-015-2836-5 CrossRefPubMedGoogle Scholar
  13. 13.
    Liu JB, Wang Y, Tang SS, Gao Q, Jin RF (2017) Theoretical guidance for experimental research of the dicyandiamide and methacrylic acid molecular imprinted polymer. New J. Chem. 41(22):13370–13376.  https://doi.org/10.1039/c7nj00207f CrossRefGoogle Scholar
  14. 14.
    Yu RP, Zhou HF, Li MY, Song QJ (2019) Rational selection of the monomer for molecularly imprinted polymer preparation for selective and sensitive detection of 3-methylindole in water. J. Electroanal. Chem. 832:129–136.  https://doi.org/10.1016/j.jelechem.2018.10.043 CrossRefGoogle Scholar
  15. 15.
    Sajini T, Thomas R, Mathew B (2019) Rational design and synthesis of photo-responsive molecularly imprinted polymers for the enantioselective intake and release of L-phenylalanine benzyl ester on multiwalled carbon nanotubes. Polymer 173:127–140.  https://doi.org/10.1016/j.polymer.2019.04.031 CrossRefGoogle Scholar
  16. 16.
    Silva CF, Borges KB, Nascimento CS (2019) Computational study on acetamiprid-molecular imprinted polymer. J. Mol. Model. 25(4):104.  https://doi.org/10.1007/s00894-019-3990-y CrossRefPubMedGoogle Scholar
  17. 17.
    Martins N, Carreiro EP, Locati A, Ramalho JPP, Cabrita MJ, Burke AJ, Garcia R (2015) Design and development of molecularly imprinted polymers for the selective extraction of deltamethrin in olive oil: an integrated computational-assisted approach. J. Chromatogr. A 1409:1–10.  https://doi.org/10.1016/j.chroma.2015.07.025 CrossRefPubMedGoogle Scholar
  18. 18.
    Fonseca MC, Nascimento CS, Borges KB (2016) Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol. Chem. Phys. Lett. 645:174–179.  https://doi.org/10.1016/j.cplett.2015.12.061 CrossRefGoogle Scholar
  19. 19.
    Wu HY, Li X, Meng SC, Xu JC, Zhang WC, Jiang Y, Qiu FX (2018) A comprehensive theoretical study of structural optimization, interaction energies calculations and solvent effects between ractopamine and functional monomers in molecular imprinting polymers. Polym. Bull. 75(5):1981–1996.  https://doi.org/10.1007/s00289-017-2140-x CrossRefGoogle Scholar
  20. 20.
    Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, Price JE (2005) Curcumin suppresses the paclitaxel-induced nuclear factor-kappa B pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res. 11(20):7490–7498.  https://doi.org/10.1158/1078-0432.ccr-05-1192 CrossRefPubMedGoogle Scholar
  21. 21.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New Engl J Med 355(24):2542–2550.  https://doi.org/10.1056/NEJMoa061884 CrossRefPubMedGoogle Scholar
  22. 22.
    Liu WC, Gong T, Zhu P (2016) Advances in exploring alternative Taxol sources. RSC Adv. 6(54):48800–48809.  https://doi.org/10.1039/c6ra06640b CrossRefGoogle Scholar
  23. 23.
    He CT, Li ZL, Zhou Q, Shen C, Huang YY, Mubeen S, Yang JZ, Yuan JG, Yang ZY (2018) Transcriptome profiling reveals specific patterns of paclitaxel synthesis in a new Taxus yunnanensis cultivar. Plant Physiol. Biochem. 122:10–18.  https://doi.org/10.1016/j.plaphy.2017.10.028 CrossRefPubMedGoogle Scholar
  24. 24.
    Fan JP, Xu XK, Xu R, Zhang XH, Zhu JH (2015) Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus x media. Chem. Eng. J. 279:567–577.  https://doi.org/10.1016/j.cej.2015.05.045 CrossRefGoogle Scholar
  25. 25.
    Ghasemi S, Nematollahzadeh A (2018) Molecularly imprinted ultrafiltration polysulfone membrane with specific nano-cavities for selective separation and enrichment of paclitaxel from plant extract. React. Funct. Polym. 126:9–19.  https://doi.org/10.1016/j.reactfunctpolym.2018.02.012 CrossRefGoogle Scholar
  26. 26.
    Zhang H, Li YQ, Zheng DY, Cao SL, Chen LH, Huang LL, Xiao HN (2019) Bio-inspired construction of cellulose-based molecular imprinting membrane with selective recognition surface for paclitaxel separation. Appl. Surf. Sci. 466:244–253.  https://doi.org/10.1016/j.apsusc.2018.10.038 CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford, CT, USAGoogle Scholar
  28. 28.
    Hohenberg P, Kohn W (1964) Inhomogeneous Electron gas. Phys. Rev. 136(3B):B864–B871CrossRefGoogle Scholar
  29. 29.
    Wei Q, Zhou Q, Zhao MY, Zhang MX, Song P (2017) Theoretical study on ESIPT mechanism of 2-acetylindan-1,3-dione in hexane and acetonitrile solvents. J. Lumin. 183:7–12.  https://doi.org/10.1016/j.jlumin.2016.11.024 CrossRefGoogle Scholar
  30. 30.
    Liu J, Xia JR, Song P, Ding Y, Cui YL, Liu XM, Dai YM, Ma FC (2014) Organic nonlinear optical materials: the mechanism of intermolecular covalent bonding interactions of Kekule hydrocarbons with significant singlet Biradical character. ChemPhysChem 15(12):2626–2633.  https://doi.org/10.1002/cphc.201402026 CrossRefPubMedGoogle Scholar
  31. 31.
    Cao S, Wang JG, Ma FC, Sun MT (2018) Charge-transfer channel in quantum dot-graphene hybrid materials. Nanotechnology 29(14):12.  https://doi.org/10.1088/1361-6528/aaac62 CrossRefGoogle Scholar
  32. 32.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6):3098–3100CrossRefGoogle Scholar
  33. 33.
    Sun MT, Xia LX, Chen MD (2009) Self-assembled dynamics of silver nanoparticles and self-assembled dynamics of 1,4-benzenedithiol adsorbed on silver nanoparticles: surface-enhanced Raman scattering study. Spectrochim Acta Part A 74(2):509–514.  https://doi.org/10.1016/j.saa.2009.06.055 CrossRefGoogle Scholar
  34. 34.
    Gomez-Pineda LE, Pina-Luis GE, Cortes-Romero CM, Palomar-Pardave ME, Rosquete-Pina GA, Diaz-Garcia ME, Hernandez MDC (2010) Quantum chemical calculations on the interaction between flavonol and functional monomers (methacrylic acid and 4-vinylpyridine) in molecularly imprinted polymers. Molecules 15(6):4017–4032.  https://doi.org/10.3390/molecules15064017 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 105(24):11024–11031.  https://doi.org/10.1063/1.472902 CrossRefGoogle Scholar
  36. 36.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4):553–566.  https://doi.org/10.1080/00268977000101561 CrossRefGoogle Scholar
  37. 37.
    Saloni J, Walker K, Hill G (2013) Theoretical investigation on monomer and solvent selection for molecular imprinting of nitrocompounds. J. Phys. Chem. A 117(7):1531–1534.  https://doi.org/10.1021/jp2124839 CrossRefPubMedGoogle Scholar
  38. 38.
    Garcia-Rates M, Neese F (2019) Efficient implementation of the analytical second derivatives of hartree-fock and hybrid DFT energies within the framework of the conductor-like polarizable continuum model. J. Comput. Chem. 40(20):1816–1828.  https://doi.org/10.1002/jcc.25833 CrossRefPubMedGoogle Scholar
  39. 39.
    Gomez-Pineda LE, Pina-Luis GE, Cuan A, Garcia-Calzon JA, Diaz-Garcia ME (2011) Physico-chemical characterization of flavonol molecularly imprinted polymers. React. Funct. Polym. 71(4):402–408.  https://doi.org/10.1016/j.reactfunctpolym.2010.12.013 CrossRefGoogle Scholar
  40. 40.
    Prasad BB, Rai G (2012) Study on monomer suitability toward the template in molecularly imprinted polymer: an ab initio approach. Spectrochim Acta Part A 88:82–89.  https://doi.org/10.1016/j.saa.2011.11.061 CrossRefGoogle Scholar
  41. 41.
    Cowen T, Karim K, Piletsky S (2016) Computational approaches in the design of synthetic receptors - a review. Anal. Chim. Acta 936:62–74.  https://doi.org/10.1016/j.aca.2016.07.027 CrossRefPubMedGoogle Scholar
  42. 42.
    Riahi S, Edris-Tabrizi F, Javanbakht M, Ganjali MR, Norouzi P (2009) A computational approach to studying monomer selectivity towards the template in an imprinted polymer. J. Mol. Model. 15(7):829–836.  https://doi.org/10.1007/s00894-008-0437-2 CrossRefPubMedGoogle Scholar
  43. 43.
    Saloni J, Dasary SSR, Anjaneyulu Y, Yu H, Hill G (2010) Molecularly imprinted polymers for detection of explosives: computational study on molecular interactions of 2,6-dinitrotoluene and methacrylic acid complex. Struct. Chem. 21(6):1171–1184.  https://doi.org/10.1007/s11224-010-9657-z CrossRefGoogle Scholar
  44. 44.
    Saloni J, Lipkowski P, Dasary SSR, Anjaneyulu Y, Yu HT, Hill G (2011) Theoretical study of molecular interactions of TNT, acrylic acid, and ethylene glycol dimethacrylate - elements of molecularly imprinted polymer modeling process. Polymer 52(4):1206–1216.  https://doi.org/10.1016/j.polymer.2010.11.057 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Key Laboratory of Forest Plant Ecology, Ministry of EducationNortheast Forestry UniversityHarbinChina
  2. 2.College of ScienceNortheast Forestry UniversityHarbinChina

Personalised recommendations