Journal of Molecular Modeling

, 25:361 | Cite as

Cooperativity of hydrogen bonding network in microsolvated biotin, the ligand of avidin class proteins

  • Aneta Jezierska
  • Jarosław Jan PanekEmail author
Original Paper
Part of the following topical collections:
  1. Zdzislaw Latajka 70th Birthday Festschrift


Biotin is well known to be bound with exceptional strength by the avidin class of proteins. This ability comes from a match between the biotin-binding pocket of the protein and the structural elements of biotin, including its ureido and thiolane rings. Here we investigate the solvation shell of biotin in water as revealed by classical force field molecular dynamics with GAFF force field. Snapshots from the classical molecular dynamics were then used to generate microsolvated structures. Details of hydrogen bonding patterns present in these microsolvated structures were studied by symmetry-adapted perturbation theory (SAPT). Interaction energy values for small models of biotin hydrated by 5 or 6 water molecules show that the cooperativity constitutes 15–22% of the total interaction energy and corresponds roughly to formation of one additional hydrogen bond to biotin. The SAPT analysis shows the differences underlying hydrogen bonds of similar strength (with oxygen or sulfur atoms as the hydrogen bond acceptors, and with nitrogen atom playing a dual role of the donor and acceptor).


Biotin Avidin ligand Microsolvation Hydrogen bonding cooperativity Interaction energy Symmetry-adapted perturbation theory 



The use of computational resources of Wrocław Center for Networking and Supercomputing (WCSS) and Interdisciplinary Center of Modeling (ICM Warsaw) is gratefully acknowledged.

Funding information

The authors received financial support from the National Science Centre (NCN Poland) under the grant no. UMO-2013/09/B/ST4/00279.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

894_2019_4253_MOESM1_ESM.pdf (509 kb)
ESM 1 (PDF 509 kb)


  1. 1.
    Wilchek M, Bayer EA (1990) Introduction to avidin-biotin technology. In: Wilchek M, Bayer EA (eds) Avidin-biotin technology, volume 184 of methods in enzymology, 1st edn. Academic Press, pp 5–13Google Scholar
  2. 2.
    Green NM (1975) Avidin. Adv. Protein Chem. 29:85–133. CrossRefPubMedGoogle Scholar
  3. 3.
    Weber PC, Wendoloski JJ, Pantoliano MW, Salemme FR (1992) Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin. J. Am. Chem. Soc. 114:3197–3200. CrossRefGoogle Scholar
  4. 4.
    Dundas CM, Demonte D, Park S (2013) Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl. Microbiol. Biotechnol. 97:9343–9353. CrossRefPubMedGoogle Scholar
  5. 5.
    Wilson ME, Whitesides GM (1978) Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100:306–307. CrossRefGoogle Scholar
  6. 6.
    Heinisch T, Ward TR (2016) Artificial metalloenzymes based on the biotin–streptavidin technology: challenges and opportunities. Acc. Chem. Res. 49:1711–1721. CrossRefPubMedGoogle Scholar
  7. 7.
    Davis HJ, Ward TR (2019) Artificial metalloenzymes: challenges and opportunities. ACS Cent Sci 5:1120–1136. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chilkoti A, Tan PH, Stayton PS (1995) Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Proc. Natl. Acad. Sci. U. S. A. 92:1754–1758. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Panek JJ, Ward TR, Jezierska-Mazzarello A, Novič M (2010). J. Comput. Aided Mol. Des. 24:719–732. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    DeChancie J, Houk KN (2007) The origins of femtomolar protein−ligand binding: hydrogen-bond cooperativity and desolvation energetics in the biotin−(strept)avidin binding site. J. Am. Chem. Soc. 129:5419–5429. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lei Y, Li H, Zhang R, Han S (2007) Theoretical study of cooperativity in biotin. J. Phys. Chem. B 111:14370–14377. CrossRefPubMedGoogle Scholar
  12. 12.
    Grabowski SJ (2011) Non-covalent interactions - QTAIM and NBO analysis. J. Mol. Model. 19:4713–4721. CrossRefGoogle Scholar
  13. 13.
    Jeziorski B, Moszyński R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev. 7:1887–1930. CrossRefGoogle Scholar
  14. 14.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general AMBER force field. J. Comput. Chem. 25:1157–1174. CrossRefPubMedGoogle Scholar
  15. 15.
    Jakalian A, Bush BL, Jack BD, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. method. J. Comput. Chem. 21:132–146. CrossRefGoogle Scholar
  16. 16.
    Jorgensen WL, Chandrasekhar J, Madura JD (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–935. CrossRefGoogle Scholar
  17. 17.
    Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San FranciscoGoogle Scholar
  18. 18.
    Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Molec Graph 14:33–38. CrossRefGoogle Scholar
  19. 19.
    Kendall RA, Dunning Jr TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. CrossRefGoogle Scholar
  20. 20.
    Hohenstein EG, Sherrill CD (2010) Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory. J. Chem. Phys. 133:014101. CrossRefPubMedGoogle Scholar
  21. 21.
    Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Di Remigio R, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, Schaefer HF, Patkowski K, King RA, Valeev EF, Evangelista FA, Turney JM, Crawford TD, Sherrill CD (2017) Psi4 1.1: an open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J. Chem. Theory Comput. 13:3185–3197. CrossRefPubMedGoogle Scholar
  22. 22.
    Livnah O, Bayer EA, Wilchek M, Sussman JL (1993) Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl. Acad. Sci. U. S. A. 90:5076–5080. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Katz BA (1997) Binding of biotin to streptavidin stabilizes intersubunit salt bridges between Asp61 and His87 at low pH. J. Mol. Biol. 274:776–800. CrossRefPubMedGoogle Scholar
  24. 24.
    Panek JJ, Jezierska A (2007) Symmetry-adapted perturbation theory analysis of the N···HX hydrogen bonds. J. Phys. Chem. A 111:650–655. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of WrocławWrocławPoland

Personalised recommendations