Journal of Molecular Modeling

, 25:338 | Cite as

Interstitial sodium and lithium doping effects on the electronic and mechanical properties of silicon nanowires: a DFT study

  • F. SalazarEmail author
  • A. Trejo-Baños
  • A. Miranda
  • L. A. Pérez
  • M. Cruz-Irisson
Original Paper
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)


In this work, we present a theoretical study of the electronic band structure and the Young’s modulus of hydrogen-passivated silicon nanowires (H-SiNWs), grown along the [110] crystallographic direction, as a function of the concentration of interstitial sodium (Na) and lithium (Li) atoms. The study is performed using the supercell scheme and the density functional theory (DFT), within the local density approximation (LDA). The results show that the presence of Na or Li atoms closes the former semiconducting band gap of the H-SiNWs and shifts the Fermi energy into the conduction band. The transition from semiconductor to metal occurs as soon as a single Na or Li atom is added to the nanowire and the number of occupied states near the Fermi level is larger for the H-SiNWs with Li atoms in comparison with those nanowires with the same concentration of Na atoms. The calculated formation energies reveal that the system becomes less stable when the concentration of Na and Li atoms augments. Moreover, the obtained binding energies indicate that Si–Li and Si–Na bonds are formed. It is worth mentioning that the binding energies of H-SiNWs with interstitial Li atoms are larger than those corresponding to the H-SiNWs with interstitial Na atoms. On the other hand, the Young’s moduli of H-SiNWs with Na atoms are lower than those of pure H-SiNWs and their values diminish when the concentration of Na atoms increases. In contrast, Young’s moduli of H-SiNWs present a non-monotonic behavior as a function of the concentration of interstitial Li atoms and for the largest studied concentration the nanowire fractures. These results give insight into the changes that electronic and mechanical properties of H-SiNWs suffer during the charge-discharge process, which should be taken into account in the design of electrodes of Na or Li-ion batteries.


Silicon nanowires Na-ion batteries Li-ion batteries Young’s modulus Density functional theory 


Funding information

This work was supported by SIP-IPN multidisciplinary projects 2018-1969, -1937, -1239, and -1293; and UNAM-PAPIIT IN109320. Computations were done at supercomputer Miztli of DGTIC-UNAM (project LANCAD-UNAM-DGTIC-180), and ABACUS of CINVESTAV.


  1. 1.
    Priolo F, Gregorkiewicz T, Galli M, Krauss TF (2014) Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol 9:19–32. CrossRefPubMedGoogle Scholar
  2. 2.
    Mallorquí AD, Alarcón-Lladó E, Mundet IC et al (2015) Field-effect passivation on silicon nanowire solar cells. Nano Res 8:673–681. CrossRefGoogle Scholar
  3. 3.
    Share K, Westover A, Li M, Pint CL (2016) Surface engineering of nanomaterials for improved energy storage – A review. Chem Eng Sci 154:3–19. CrossRefGoogle Scholar
  4. 4.
    Wei L, Hou Z, Wei H (2017) Porous Sandwiched Graphene/Silicon Anodes for Lithium Storage. Electrochim Acta 229:445–451. CrossRefGoogle Scholar
  5. 5.
    Palacin MR, de Guibert A (2016) Why do batteries fail?. Science 351(6273):1253292. CrossRefGoogle Scholar
  6. 6.
    Nagelberg AS, Worrell WL (1979) A thermodynamic study of sodium-intercalated TaS2 and TiS2. J Solid State Chem 29:345–354. CrossRefGoogle Scholar
  7. 7.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Lithium cobalt oxide(LixCoO2) (0<x≤1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789. CrossRefGoogle Scholar
  8. 8.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research Development on Sodium-ion Batteries. Chem Rev 114:11636–11682. CrossRefPubMedGoogle Scholar
  9. 9.
    Landi BJ, Ganter MJ, Cress CD et al (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654. CrossRefGoogle Scholar
  10. 10.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for Rechargeable Lithium Batteries. Angew Chemie - Int Ed 47:2930–2946. CrossRefGoogle Scholar
  11. 11.
    McDowell MT, Lee SW, Nix WD, Cui Y (2013) 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithiumion Batteries. Adv. Mater. 25:4966–4985. CrossRefGoogle Scholar
  12. 12.
    Su X, Wu Q, Li J et al (2014) Silicon-Based Nanomaterials for Lithium-ion Batteries: A Review. Adv Energy Mater 4:1300882. CrossRefGoogle Scholar
  13. 13.
    Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72. CrossRefGoogle Scholar
  14. 14.
    Chan CK, Peng H, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35. CrossRefPubMedGoogle Scholar
  15. 15.
    Wan W, Zhang Q, Cui Y, Wang E (2010) First principles study of lithium insertion in bulk silicon. J Phys Condens Matter 22:415501. CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang Q, Zhang W, Wan W et al (2010) Lithium Insertion In Silicon Nanowires: An ab Initio Study. Nano Lett 10:3243–3249. CrossRefPubMedGoogle Scholar
  17. 17.
    Chou CY, Lee M, Hwang GS (2015) A Comparative First-Principles Study on Sodiation of Silicon, Germanium, and Tin for Sodium-ion Batteries. J Phys Chem C 119:14843–14850. CrossRefGoogle Scholar
  18. 18.
    Song T, Hu L, Paik U (2014) One-Dimensional Silicon Nanostructures for Li Ion Batteries. J Phys Chem Lett 5:720–731. CrossRefPubMedGoogle Scholar
  19. 19.
    McDowell MT, Lee SW, Ryu I et al (2011) Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes. Nano Lett 11:4018–4025. CrossRefPubMedGoogle Scholar
  20. 20.
    Liu Y, Fan LZ, Jiao L (2017) Graphene highly scattered in porous carbon nanofibers: a binder-free and high-performance anode for sodium-ion batteries. J Mater Chem A 5:1698–1705. CrossRefGoogle Scholar
  21. 21.
    Palomares V, Serras P, Villaluenga I et al (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901. CrossRefGoogle Scholar
  22. 22.
    Liu Y, Zhang N, Kang H et al (2015) WS 2 Nanowires as a High-Performance Anode for Sodium-Ion Batteries. Chem - A Eur J 21:11878–11884. CrossRefGoogle Scholar
  23. 23.
    Ong SP, Chevrier VL, Hautier G et al (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4:3680–3688. CrossRefGoogle Scholar
  24. 24.
    Ansari R, Shahnazari A, Malakpour S et al (2016) A DFT study on the elastic and plastic properties of MoS 2 nanosheet subjected to external electric field. Superlattices Microstruct 97:506–518. CrossRefGoogle Scholar
  25. 25.
    Ansari R, Ajori S, Malakpour S (2016) Prediction of structural and mechanical properties of atom-decorated porous graphene via density functional calculations. Eur Phys J Appl Phys 74:10401. CrossRefGoogle Scholar
  26. 26.
    Kennedy T, Brandon M, Ryan KM (2016) Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries. Adv Mater 28:5696–5704. CrossRefGoogle Scholar
  27. 27.
    McDowell MT, Xia S, Zhu T (2016) The mechanics of large-volume-change transformations in high-capacity battery materials. Extrem Mech Lett 9:480–494. CrossRefGoogle Scholar
  28. 28.
    Tang D-M, Ren C-L, Wang M-S et al (2012) Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett 12:1898–1904. CrossRefPubMedGoogle Scholar
  29. 29.
    Ceperley DM, Alder BJ (1980) Ground State of the Electron Gas by a Stochastic Method. Phys Rev Lett 45:566–569. CrossRefGoogle Scholar
  30. 30.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079. CrossRefGoogle Scholar
  31. 31.
    Soler JM, Artacho E, Gale JD et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779. Google Scholar
  32. 32.
    Kleinman L, Bylander DM (1982) Efficacious Form for Model Pseudopotentials. Phys Rev Lett 48:1425–1428. CrossRefGoogle Scholar
  33. 33.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. CrossRefGoogle Scholar
  34. 34.
    Wei S, Allan DC, Wilkins JW (1992) Elastic constants of a Si/Ge superlattice and of bulk Si and Ge. Phys Rev B 46:12411–12420. CrossRefGoogle Scholar
  35. 35.
    Artacho E, Sánchez-Portal D, Ordejón P et al (1999) Linear-Scaling ab-initio Calculations for Large and Complex Systems. Phys Status Solidi 215:809–817.<809::AID-PSSB809>3.0.CO;2-0
  36. 36.
    Junquera J, Paz Ó, Sánchez-Portal D, Artacho E (2001) Numerical atomic orbitals for linear-scaling calculations. Phys Rev B - Condens Matter Mater Phys 64:1–9.
  37. 37.
    Kittel C (1996) Introduction to Solid State Physics, 7 th. John Wiley & sons, New YorkGoogle Scholar
  38. 38.
    Kulish VV, Malyi OI, Ng MF et al (2014) Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys 16:4260–4267. CrossRefPubMedGoogle Scholar
  39. 39.
    González I, Sosa AN, Trejo A et al (2018) Lithium effect on the electronic properties of porous silicon for energy storage applications: a DFT study. Dalt Trans 47:7505–7514. CrossRefGoogle Scholar
  40. 40.
    González-Macías A, Salazar F, Miranda A et al (2018) Theoretical study of the mechanical and electronic properties of [111]-Si nanowires with interstitial lithium. J Mater Sci Mater Electron 29:15795–15800. Google Scholar
  41. 41.
    Amato M, Ossicini S, Rurali R (2011) Band-Offset Driven Efficiency of the Doping of SiGe Core-Shell Nanowires. Nano Lett 11:594–598. CrossRefGoogle Scholar
  42. 42.
    Arrieta U, Katcho NA, Arcelus O, Carrasco J (2017) First-Principles Study of Sodium Intercalation in Crystalline NaxSi24(0 ≤ x ≤ 4) as Anode Material for Na-ion Batteries. Sci Rep 7:1–8. CrossRefGoogle Scholar
  43. 43.
    González-Macías A, Salazar F, Miranda A et al (2018) Lithium effects on the mechanical and electronic properties of germanium nanowires. Nanotechnology 29:154004. CrossRefGoogle Scholar
  44. 44.
    Salazar F, Pérez LA (2012) Theoretical study of electronic and mechanical properties of GeC nanowires. Comput Mater Sci 63:47–51. CrossRefGoogle Scholar
  45. 45.
    Lee B, Rudd RE (2007) First-principles calculation of mechanical properties of Si<001> nanowires and comparison to nanomechanical theory. Phys Rev B 75:195328. CrossRefGoogle Scholar
  46. 46.
    Zhang WW, Huang QA, Yu H, Lu LB (2009) Size-Dependent Elasticity of Silicon Nanowires. Adv Mater Res 60–61:315–319. CrossRefGoogle Scholar
  47. 47.
    Wortman JJ, Evans R a. (1965) Young’s Modulus, Shear Modulus, and Poisson’s Ratio in Silicon and Germanium. J Appl Phys 36:153–156. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. Salazar
    • 1
    Email author
  • A. Trejo-Baños
    • 1
  • A. Miranda
    • 1
  • L. A. Pérez
    • 2
  • M. Cruz-Irisson
    • 1
  1. 1.Instituto Politécnico NacionalESIME-CulhuacánCiudad de MéxicoMexico
  2. 2.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations