Journal of Molecular Modeling

, 25:355 | Cite as

Enhanced GROMACS: toward a better numerical simulation framework

  • Hojjat Rakhshani
  • Effat DehghanianEmail author
  • Amin Rahati
Original Paper


The GROMACS software package represented a promising direction toward the molecular dynamic simulation and there is ongoing interest to extend it. In this study, we introduce a new component into the conventional package with the goal being to facilitate the process of finding the native structure of proteins with minimal free-energy value. We achieved this through incorporating a wide range of metaheuristic optimization algorithms and force fields, leading up to the EGROMACS molecular simulation toolkit. Compared with other programs, the EGROMACS supports all standard force fields as well as new minimization algorithms and Hybrid MPI/OpenMP parallelization. We applied the proposed EGROMACS framework to minimize the structure of several target sequences. The obtained results showed comparative performance of the introduced framework to current well-known molecular simulation algorithms. This extension to the GROMACS, however, uses metaheuristic algorithms to address the problem.


GROMACS software package Metaheuristic optimization algorithms Molecular dynamic simulation Structure of proteins 



  1. 1.
    Adhikari B, Bhattacharya D, Cao R, Cheng J (2015) Confold: residue-residue contact-guided ab initio protein folding. Proteins: Structure, Function, and Bioinformatics 83(8):1436–1449CrossRefGoogle Scholar
  2. 2.
    Anfinsen CB (1993) Studies on the principles that govern the folding of protein chains. Chemistry 1971-1980:55Google Scholar
  3. 3.
    Beauchamp KA, McGibbon R, Lin YS, Pande VS (2012) Simple few-state models reveal hidden complexity in protein folding. Proc Natl Acad Sci 109(44):17807–17813CrossRefGoogle Scholar
  4. 4.
    Bhattacharya D, Adhikari B, Li J, Cheng J (2016) Fragsion: ultra-fast protein fragment library generation by IOHMM sampling. Bioinformatics 32(13):2059–2061CrossRefGoogle Scholar
  5. 5.
    Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6(2):459–466CrossRefGoogle Scholar
  6. 6.
    Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) Cabs-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41(W1):W406–W411CrossRefGoogle Scholar
  7. 7.
    Dunbrack RL Jr (2002) Rotamer libraries in the 21st century. Current Opinion in Structural Biology 12 (4):431–440CrossRefGoogle Scholar
  8. 8.
    van Gunsteren WF, Daura X, Mark AE (2002) GROMOS force field. American cancer society.
  9. 9.
    Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation 4(3):435–447CrossRefGoogle Scholar
  10. 10.
    Holland JH et al (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT Press, CambridgeCrossRefGoogle Scholar
  11. 11.
    Huang PS, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537 (7620):320CrossRefGoogle Scholar
  12. 12.
    Jorgensen WL (2002) OPLS force fields. American cancer society.
  13. 13.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols 10(6):845CrossRefGoogle Scholar
  14. 14.
    Kennedy J (2010) Particle swarm optimization. Encyclopedia of machine learning, pp 760–766Google Scholar
  15. 15.
    Kryshtafovych A, Fidelis K, Moult J (2014) CASP10 results compared to those of previous CASP experiments. Proteins: Structure, Function, and Bioinformatics 82:164–174CrossRefGoogle Scholar
  16. 16.
    Levinthal C (1969) How to fold graciously. Mossbauer spectroscopy in biological systems: Proceedings of a meeting held at allerton house. Monticello, Illinois (Debrunnder JTP, Munck E.., eds.) pp 22–24Google Scholar
  17. 17.
    Man VH, He X, Derreumaux P, Ji B, Xie XQ, Nguyen PH, Wang J (2019) Effects of all-atom molecular mechanics force fields on amyloid peptide assembly: the case of aβ16–22 dimer. Journal of Chemical Theory and Computation 15(2):1440–1452. PMID: 30633867CrossRefGoogle Scholar
  18. 18.
    McGinnis S, Madden TL (2004) Blast: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32(suppl_2):W20–W25CrossRefGoogle Scholar
  19. 19.
    Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, Braberg H, Yang Z, Meng EC, Pettersen EF, Huang CC et al (2010) Modbase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 39(suppl_1):D465–D474PubMedPubMedCentralGoogle Scholar
  20. 20.
    Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using rosetta. In: Methods in enzymology, vol 383, pp 66–93. ElsevierGoogle Scholar
  21. 21.
    Roy A, Kucukural A, Zhang Y (2010) I-tasser: a unified platform for automated protein structure and function prediction. Nature Protocols 5(4):725CrossRefGoogle Scholar
  22. 22.
    Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(suppl_2):W244–W248CrossRefGoogle Scholar
  23. 23.
    Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4):341–359CrossRefGoogle Scholar
  24. 24.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174CrossRefGoogle Scholar
  25. 25.
    Webb B, Sali A (2014) Protein structure modeling with modeller. In: Protein structure prediction, pp 1–15. SpringerGoogle Scholar
  26. 26.
    Wolpert DH, Macready WG, et al. (1997) No free lunch theorems for optimization. IEEE transactions on evolutionary computation 1(1):67–82CrossRefGoogle Scholar
  27. 27.
    Wötzel N (2011) A novel approach to de novo protein structure prediction using knowledge based energy functions and experimental restraints. CiteseerGoogle Scholar
  28. 28.
    Wu S, Zhang Y (2008) Muster: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins: Structure, Function, and Bioinformatics 72(2):547–556CrossRefGoogle Scholar
  29. 29.
    Xu D, Jaroszewski L, Li Z, Godzik A (2015) Aida: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction. Bioinformatics 31(13):2098–2105CrossRefGoogle Scholar
  30. 30.
    Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins: Structure, Function, and Bioinformatics 80(7):1715–1735Google Scholar
  31. 31.
    Xu J, Li M, Kim D, Xu Y (2003) Raptor: optimal protein threading by linear programming. Journal of Bioinformatics and Computational Biology 1(01):95–117CrossRefGoogle Scholar
  32. 32.
    Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp 210–214. IEEEGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Upper AlsaceMulhouseFrance
  2. 2.Department of ChemistryUniversity of Sistan and BaluchestanZahedanIran
  3. 3.Department of Computer ScienceUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations