Advertisement

Journal of Molecular Modeling

, 25:344 | Cite as

Study of molecular interactions by hydrogen bond of charged forms of makaluvamines and complex stability with H2O and glutamic acid (Glu Ac) by the theory of the functional of density (B3LYP)

  • Sékou Diomandé
  • Affoué Lucie Bédé
  • Soleymane KonéEmail author
  • El-Hadji Sawaliho Bamba
Original Paper
  • 38 Downloads

Abstract

This work was undertaken to understand the mode of interaction of makaluvamines, a class of marine pyrroloiminoquinone alkaloids isolated from sponges of the genus Zyzzya, used in the treatment of several human cancer cell lines. This analysis was done by the quantum chemistry method. First, we used electrostatic potential (ESP) to reveal the different sites that accept and donate hydrogen bonds (HB) of charged forms (protonated and methylated) of makaluvamines (at level B3LYP/6-311++G(d,p)). In a second step, we studied the interactions by hydrogen bond between these molecules and water molecule on the one hand (at level B3LYP/6-311++G(d,p)) and on the other hand glutamic acid a protein residue of topoisomerase II (at level B3LYP/6-31+G(d,p)). Finally, we calculated the corrected BSSE interaction energies and estimated the relative stability of the formed complexes.

Keywords

Makaluvamines Electrostatic potential (ESP) Hydrogen bond (HB) Complex Interaction energy 

Notes

References

  1. 1.
    IARC (2011) Cancer Incidence and Mortality Worlwide. International Agency for Research on Cancer, Lyon, FranceGoogle Scholar
  2. 2.
    WHO (2011) Global status report on noncommunicable diseases 2010 WT 500. WHO, Geneva, SwitzerlandGoogle Scholar
  3. 3.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917CrossRefGoogle Scholar
  4. 4.
    Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22:15–61CrossRefGoogle Scholar
  5. 5.
    Wang W, Rayburn ER, Velu SE, Nadkarni DH, Murugesan S, al. (2009) In vitro and in vivo anticancer activity of novel synthetic makaluvamine analogues. Clin Cancer Res 15(10):3511–3518CrossRefGoogle Scholar
  6. 6.
    Gupta L, Talwar A, Chauhan PM (2007) Bis and tris indole alkaloids from marine organisms: new leads for drug discovery. Curr Med Chem 14:1789–1803CrossRefGoogle Scholar
  7. 7.
    Casapullo A, Cutignano A, Bruno I, Bifulco G, Debitus C, al. (2001) Makaluvamine P, a new cytotoxic pyrroloiminoquinone from Zyzzya cf. fuliginosa. J Nat Prod 64:1354–1356CrossRefGoogle Scholar
  8. 8.
    Venables DA, Concepcion GP, Matsumoto SS, Barrows LR, Ireland CM (1997) Makaluvamine N: a new pyrroloiminoquinone from Zyzzya fuliginosa. J Nat Prod 60:408–410CrossRefGoogle Scholar
  9. 9.
    Schmidt EW, Harper MK, Faulkner DJ (1995) Makaluvamines H-M and damirone C from the Pohnpeian sponge Zyzzya fuliginosa. J Nat Prod 58:1861–1867CrossRefGoogle Scholar
  10. 10.
    Carney JR, Scheuer PJ, Kellyborges M (1993) Makaluvamine-G, a Cytotoxic Pigment from an Indonesian Sponge Histodermella Sp. Tetrahedron 49:8483–8486CrossRefGoogle Scholar
  11. 11.
    Barrows LR, Radisky DC, Copp BR, Swaffar DS, Kramer RA, al. (1993) Makaluvamines, marine natural products, are active anti-cancer agents and DNA. topo II inhibitors. Anticancer Drug Des 8(5):333–347PubMedGoogle Scholar
  12. 12.
    Radisky DC, Radisky ES, Barrows LR, Copp BR, Kramer RA et al (1993) Novel cytotoxic topoisomerase-Ii inhibiting pyrroloiminoquinones from Fijian sponges of the genus zyzzya. J Am Chem Soc 115:1632–1638CrossRefGoogle Scholar
  13. 13.
    Shinkre BA, Raisch KP, Fan LM, Velu SE (2007) Analogs of the marine alkaloid makaluvamines: synthesis, topoisomerase II inhibition, and anticancer activity. Bioorg Med Chem Lett 17:2890–2893CrossRefGoogle Scholar
  14. 14.
    Sékou Diomandé, Affoué Lucie Bédé, Soleymane Koné and El-Hadji Sawaliho Bamba (2018) Determination of protonation and methylation sites of neutral makaluvamines, relative stability and reactivity potential of the charged forms, Int J Innov Appl Stud, Vol. 25 No. 1 Dec., pp. 516-527Google Scholar
  15. 15.
    Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009Google Scholar
  16. 16.
    Hohenberg, P. Kohn, W (1964) Inhomogeneous electron gas. Phys.Rev. 136, B864CrossRefGoogle Scholar
  17. 17.
    Koch, W, Holthausen, (1999) M.C.A in chemist’s guide to density fonctional theory 2nd Ed, Wiley-VCH,.Weinheim.Google Scholar
  18. 18.
    Hunter CA (2004). Angew Chem Int Ed 43:5310CrossRefGoogle Scholar
  19. 19.
    Hagelin H, Murray JS, Brinck T, Berthelot M, Politzer P (1995). Can J Chem 73:483CrossRefGoogle Scholar
  20. 20.
    Brinck, T. (1998) Theoretical and computational chemistry 5, 51Google Scholar
  21. 21.
    Kenny, P. W. (1994) J. Chem. Soc., Perkin Trans. 2, 199Google Scholar
  22. 22.
    Murray and Politzer, WIREs Comput. Mol. Sci. 7, e1326 (2017)Google Scholar
  23. 23.
    Bader RFW, Carroll MT, Cheeseman JR, Chang CJ (1987). Am Chem Soc 109:7968CrossRefGoogle Scholar
  24. 24.
    Arnaud V, Berthelot M, Evain M, Graton J, Le Questel J-Y (2007). Chem Eur J 13:1499CrossRefGoogle Scholar
  25. 25.
    Graton J, Berthelot M, Gal J-F, Laurence C, Lebreton J, Le Questel J-Y, Maria P-C, Robins RJ (2003). Org Chem 68:8208CrossRefGoogle Scholar
  26. 26.
    Le Questel J-Y, Boquet G, Berthelot M, Laurence C (2000). J Phys Chem B 104:11816CrossRefGoogle Scholar
  27. 27.
    Arunan et al, Pure Appl. Chem. 83, 1637-1641 (2011)Google Scholar
  28. 28.
    Jansen HB, Ros P (1969). Chem Phys Lett 3:140CrossRefGoogle Scholar
  29. 29.
    Liu B, Mclean AD (1973). J Chem Phys 59:4557CrossRefGoogle Scholar
  30. 30.
    Boys SF, Bernadi F (1970). Mol Phys 19:553CrossRefGoogle Scholar
  31. 31.
    Xantheas SS (1996). JChem Phys 104:8821Google Scholar
  32. 32.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, MW Wong, C Gonzalez, JA. Pople, Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford, CT, 2004.Google Scholar
  33. 33.
    Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT, Johnson ER, Keinan S (2010) Revealing noncovalent interactions. J Am Chem Soc 24:25Google Scholar
  34. 34.
    Desiraju, G., Steiner, T. (1999) The weak hydrogen bond: applications to structural chemistry and biologyGoogle Scholar
  35. 35.
    Rowland RS, Taylor R (1996). J Phys Chem 100:7384CrossRefGoogle Scholar
  36. 36.
    Bondi A (1964). J Phys Chem 68:441CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sékou Diomandé
    • 1
  • Affoué Lucie Bédé
    • 1
  • Soleymane Koné
    • 1
    Email author
  • El-Hadji Sawaliho Bamba
    • 1
  1. 1.Laboratoire de Chimie Organique et de Substances Naturelles de l’UFR SSMTUniversité Félix Houphouët-BOIGNYAbidbjanCôte d’Ivoire

Personalised recommendations