Advertisement

Journal of Molecular Modeling

, 25:335 | Cite as

Hemiaminal route for the formation of interstellar glycine: a computational study

  • Zanele P. Nhlabatsi
  • Priya Bhasi
  • Sanyasi SithaEmail author
Original Paper

Abstract

Calculations related to two simple two-step paths (path-I: \( {\mathrm{H}}_2\mathrm{C}=\mathrm{O}+\mathrm{N}{\mathrm{H}}_3\to \upalpha -\mathrm{hydroxy}\ \mathrm{amine}\ \overset{+\mathrm{CO}}{\to }\ \mathrm{glycine}, \) path-II: \( {\mathrm{H}}_2\mathrm{C}=\mathrm{NH}+{\mathrm{H}}_2\mathrm{O}\to \upalpha -\mathrm{hydroxy}\ \mathrm{amine}\ \overset{+\mathrm{CO}}{\to }\ \mathrm{glycine} \)) for the formation of glycine have been discussed. Calculations show that at interstellar conditions these two paths are feasible only in hot cores, not in the cold interstellar clouds (cold core formation is possible only if CH2 = NH, H2O (excess) and CO of path-II, react in a concerted manner). For the laboratory synthesis of glycine, the possibility suggested is via path-I and the reaction being carried out as controlled temperature one-pot synthesis. This study can also be extended to other α-amino acids and possibly enantiomeric excess can be expected. We think this work will not only be able to enrich our future understanding about the formation of amino acids in interstellar medium but also be able to suggest alternative paths for laboratory synthesis of amino acids using either Strecker’s or Miller’s ingredients.

Graphical abstract

Using computational calculations, two different reaction paths which go through a hemiaminal (α-hydroxyamine) intermediate have been proposed. It has been proposed that the reaction \( {\mathrm{H}}_2\mathrm{C}=\mathrm{O}+\mathrm{N}{\mathrm{H}}_3\to \upalpha -\mathrm{hydroxyamine}\ \overset{+\mathrm{CO}}{\to }\ \mathrm{glycine}, \) is a thermodynamically favorable reaction path in the laboratory conditions, if carried out as a controlled temperature one-pot synthesis. On the hand, it has been argued that the reaction\( {\mathrm{H}}_2\mathrm{C}=\mathrm{NH}+{\mathrm{H}}_2\mathrm{O}\to \upalpha -\mathrm{hydroxy}\ \mathrm{amine}\ \overset{+\mathrm{CO}}{\to }\ \mathrm{glycine} \) is a feasible reaction path in the interstellar conditions, if it proceeds not via the hemiaminal route, rather in a concerted reaction path.

Keywords

Glycine Interstellar medium ISM CH2=NH HCHO NH3 CO H2

Notes

Acknowledgments

The authors like to thank University of Johannesburg for support. ZPN and PB carried out this work while doing their PhD works at University of Johannesburg.

Supplementary material

894_2019_4224_MOESM1_ESM.docx (22 kb)
ESM 1(DOCX 22 kb)

References

  1. 1.
    Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114:285–366PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Herbst E (2001) The chemistry of interstellar space. Chem. Soc. Rev. 30:168–176CrossRefGoogle Scholar
  3. 3.
    Kaiser RI (2002) Experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral−neutral reactions. Chem. Rev. 102:1309–1358PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Brown RD, Godfrey PD, Storey JWV, Bassez MP (1978) Microwave-spectrum and conformation of glycine. J. Chem. Soc. Chem. Commun.:547–548Google Scholar
  5. 5.
    Kuan Y-J, Charnley SB, Huang H–C, Tseng W–L, Kisiel Z (2003) Interstellar Glycine. Astrophys. J. 593: 848–867CrossRefGoogle Scholar
  6. 6.
    Hollis JM, Pedelty JA, Snyder LE, Jewell PR, Lovas FJ, Palmer P, Liu S.–Y (2003) A sensitive very large array search for small-scale glycine emission toward OMC-1. Astrophys. J. 588: 353–359CrossRefGoogle Scholar
  7. 7.
    Snyder LE, Lovas FJ, Hollis JM, Friedel DN, Jewell PR, Remijan A, Ilyushin VV, Alekseev EA, Dyubko SF (2005) A rigorous attempt to verify interstellar glycine. Astrophys. J. 619:914–930CrossRefGoogle Scholar
  8. 8.
    Pizzarello S (2006) The chemistry of life’s origin: a carbonaceous meteorite perspective. Acc. Chem. Res. 39:231–237PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Burton AS, Stern JC, Elsila JE, Galvin DP, Dworkin JP (2012) Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41:5459–5472PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. 107:2763–2768PubMedCrossRefGoogle Scholar
  11. 11.
    Cronin JR, Pizarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955PubMedCrossRefGoogle Scholar
  12. 12.
    Engel MH, Nagy B (1982) Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296:837–840CrossRefGoogle Scholar
  13. 13.
    Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Engel MH, Macko SA, Silfer JA (1990) Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348:47–49PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Callahan MP, Burton AS, Elsila JE, Baker EM, Smith KE, Glavin DP, Dworkin JP (2013) A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-mass spectrometry. Meteorit. Planet. Sci.:48: 786–48: 795CrossRefGoogle Scholar
  16. 16.
    Brown PG, Hildebrand AR, Zolensky MF, Grady M, Clayton RN, Mayeda TK, Tagliaferri E, Spalding R, MacRae ND, Hoffman EJ, Mittlefehldt DW, Wacker JF, Andrew Bird J, Campbell MD, Carpenter R, Gingerich H, Glatiotis M, Greiner E, Mazur MJ, McCausland PJA, Plotkin H, Mazur TR (2000) The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science 290:320–325PubMedCrossRefGoogle Scholar
  17. 17.
    Hiroi T, Zolensky ME, Pieters CM (2001) The Tagish Lake meteorite: a possible sample from a D-type asteroid. Science 293:2234–2236PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lawless JG, Kvenvolden KA, Peterson E, Ponnamperuma C, Moore C (1971) Amino acids indigenous to the Murray meteorite. Science 173:626–627PubMedCrossRefGoogle Scholar
  19. 19.
    Elsila JE, Glavin D, Dworkin JP (2009) Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 44:1323–1330CrossRefGoogle Scholar
  20. 20.
    Strecker A (1850) Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Annalen der Chemie und Pharmazie 75:27–45CrossRefGoogle Scholar
  21. 21.
    Strecker A (1854) Ueber einen neuen aus Aldehyd – Ammoniak und Blausäure entstehenden Körper (p ). Annalen der Chemie und Pharmazie 91:349–351CrossRefGoogle Scholar
  22. 22.
    Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 13:245–251CrossRefGoogle Scholar
  24. 24.
    Bada JL (2013) New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem. Soc. Rev. 42:2186–2196PubMedCrossRefGoogle Scholar
  25. 25.
    Wang L–P, Titov A, McGibbon R, Liu F, Pande VS, Martínez TJ (2014) Discovering chemistry with an ab initio nanoreactor. Nat. Chem. 6: 1044–1048PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford CT, USAGoogle Scholar
  27. 27.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652CrossRefGoogle Scholar
  28. 28.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:785–789CrossRefGoogle Scholar
  29. 29.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 109:7764–7776CrossRefGoogle Scholar
  30. 30.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 110:7650–7657CrossRefGoogle Scholar
  31. 31.
    Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) Gaussian-3 theory using reduced Møller-Plesset order. J. Chem. Phys. 110:4703–4709CrossRefGoogle Scholar
  32. 32.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 127:124105PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hratchian HP, Schlegel HB (2004) Accurate reaction paths using a Hessian based predictor-corrector integrator. J. Chem. Phys. 120:9918–9924PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ospina E, Villaveces JL (1993) Theoretical calculation of the reaction mechanism between ammonia and formaldehyde. J Mol Struct:THEOCHEM 287:201–209CrossRefGoogle Scholar
  35. 35.
    Bhasi P, Nhlabatsi ZP, Sitha S (2016) Expanding the applicability of electrostatic potentials to the realm of transition states. Phys. Chem. Chem. Phys. 18:13002–13009PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Shannon RJ, Blitz MA, Goddard A, Heard DE (2013) Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nat. Chem. 5:745–749PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Smith IWM, Ravishankara AR (2002) Role of hydrogen-bonded intermediates in the bimolecular reactions of the hydroxyl radical. J. Phys. Chem. A 106:4798–4807CrossRefGoogle Scholar
  38. 38.
    Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2=NH, CO2 and H2. Phys. Chem. Chem. Phys. 18:20109–20117PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pal R, Nagendra G, Samarasimhareddy M, Sureshbabu VV, Guru Row TN (2015) Observation of a reversible isomorphous phase transition and an interplay of “σ-holes” and “π-holes” in Fmoc-Leu-ψ[CH2-NCS]. Chem. Commun. 51:933CrossRefGoogle Scholar
  40. 40.
    Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sanchez G, Elguero J (2012) Competition and interplay between σ-hole and π-hole interactions: a computational study of 1:1 and 1:2 complexes of nitryl halides (O2NX) with ammonia. J. Phys. Chem. A 116:5199PubMedCrossRefGoogle Scholar
  41. 41.
    Bauza A, Mooibroek TJ, Frontera A (2015) The bright future of unconventional σ/π-hole interactions. Chemphyschem 16:2496PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) Σ-holes, π-holes and electrostatically-driven interactions. J. Mol. Model. 18:541–548PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Baymak MS, Zuman P (2007) Equilibria of formation and dehydration of the carbinolamine intermediate in the reaction of benzaldehyde with hydrazine. Tetrahedron 63:5450–5454CrossRefGoogle Scholar
  44. 44.
    Evans DA, Borg G, Scheidt KA (2002) Remarkably stable tetrahedral intermediates: carbinols from nucleophilic additions to N-acylpyrroles. Angew. Chem. Int. Ed. 41:3188–3191CrossRefGoogle Scholar
  45. 45.
    Hooley RJ, Iwasawa T, Rebek Jr J (2007) Detection of reactive tetrahedral intermediates in a deep cavitand with an introverted functionality. J. Am. Chem. Soc. 129:15330–15339PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Iwasawa T, Hooley RJ, Rebek Jr J (2007) Stabilization of labile carbonyl addition intermediates by a synthetic receptor. Science 317:493–496PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Xu L, Hua S, Li S (2013) Insight into the reaction between a primary amine and a cavitand with an introverted aldehyde group: an enzyme-like mechanism. Chem. Commun. 49:1542–1544CrossRefGoogle Scholar
  48. 48.
    Kawamichi T, Haneda T, Kawano M, Fujita M (2009) X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461:633–635PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Morris W, Doonan CJ, Yaghi OM (2011) Postsynthetic modification of a metal-organic framework for stabilization of a hemiaminal and ammonia uptake. Inorg. Chem. 50:6853–6855PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Dolotko O, Wiench JW, Dennis KW, Pecharsky VK, Balema VP (2010) Mechanically induced reactions in organic solids: liquid eutectics or solid-state processes? New J. Chem. 34:25–28CrossRefGoogle Scholar
  51. 51.
    For a complete up-to-date list of interstellar and circumstellar molecules, see http://www.astrochymist.org/astrochymist_ism.html and http://www.astro.uni-koeln.de/cdms/molecules. (Webpages were last accessed on 22ND July 2019)
  52. 52.
    Tennyson J (2003) “Molecules in space” in “Handbook of Molecular Physics and Quantum Chemistry” Eds. Wilson S 3:356–369Google Scholar
  53. 53.
    Menten KM, Wyrowski F (2011) Molecules detected in interstellar space in “Interstellar Molecules”, 241: 27-42Google Scholar
  54. 54.
    Yamada KMT, Winnewisser G (2011) List of molecules observed in interstellar space in “Interstellar Molecules”, 241: 219-223Google Scholar
  55. 55.
    Müller HSP, Schlöder F, Thorwirth S, Winnewisser G (2004) The cologne database for molecular spectroscopy, CDMS in “The Dense Interstellar Medium in Galaxies”, 91: 95-98Google Scholar
  56. 56.
    Snyder LE, Buhl D, Zuckerman B, Palmer P (1969) Microwave detection of interstellar formaldehyde. Phys. Rev. Lett. 22:679–681CrossRefGoogle Scholar
  57. 57.
    Nguyen-Q-Rieu GD, Bujarrabal V (1984) Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216. Astron. Astrophys. 138:L5–L8Google Scholar
  58. 58.
    Ziurys LM (2006) The chemistry in circumstellar envelopes of evolved stars: following the origin of the elements to the origin of life. Proc. Natl. Acad. Sci. U. S. A. 103:12274–12279PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Godfrey PD, Brown RD, Robinson BJ, Sinclair MW (1973) Discovery of interstellar methanimine (formaldimine). Astrophys Lett 13:119–121Google Scholar
  60. 60.
    Dickens JE, Irvine WM, DeVries CH, Ohishi M (1997) Hydrogenation of interstellar molecules: a survey for methylenimine (CH2NH). Astrophys. J. 479:307–312PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Salter CJ, Ghosh T, Catinella B, Lebron M, Lerner MS, Minchin R, Momjian E (2008) The arecibo ARP 220 spectral census. I. Discovery of the pre-biotic molecule methanimine and new cm-wavelength transitions of other molecules. Astron. J. 136:389–399CrossRefGoogle Scholar
  62. 62.
    Dyson JE, Williams DA (1997) The physics of the interstellar medium. Series in astronomy and astrophysics2nd edn. Bristol, Institute of PhysicsGoogle Scholar
  63. 63.
    Garrod RT, Weaver SLW (2013) Simulations of hot-core chemistry. Chem. Rev. 113:8939–8960PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    van Dishoeck EF, Blake GA (1998) Chemical evolution of star-forming regions. Ann Rev Astron Astrophys 36:317–368CrossRefGoogle Scholar
  65. 65.
    http://astronomy.swin.edu.au/cosmos/I/interstellar+gas+cloud. (Webpage was last accessed on 22nd July 2019)
  66. 66.
    Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine from the reaction of CH2=NH, CO and H2O: catalysis by extra water molecules through the hydrogen relay transport. Phys. Chem. Chem. Phys. 18:375–381PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Bhasi P, Nhlabatsi ZP, Sitha S (2015) Reaction between HN and SN: a possible channel for the interstellar formation of N2 and SH in the cold interstellar clouds. Phys. Chem. Chem. Phys. 17:32455–32463PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Sciences (APK Campus)University of JohannesburgJohannesburgSouth Africa

Personalised recommendations