Advertisement

Journal of Molecular Modeling

, 25:325 | Cite as

New inhibitors of homoserine dehydrogenase from Paracoccidioides brasiliensis presenting antifungal activity

  • Paulo Sérgio Alves Bueno
  • Franciele Abigail Vilugron Rodrigues
  • Jessyka Lima Santos
  • Fernanda Canduri
  • Débora Carina Biavatti
  • Arethusa Lobo Pimentel
  • Mariane Cristóvão Bagatin
  • Érika Seki Kioshima
  • Gisele de Freitas Gauze
  • Flavio Augusto Vicente SeixasEmail author
Original Paper
  • 89 Downloads

Abstract

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi of the genus Paracoccidioides spp., which mainly affects workers in rural regions of Latin America. Although the antifungal agents currently available for the treatment of PCM are effective in controlling the disease, many months are needed for healing, making the side effects and drug interactions relevant. In addition, conventional treatments are not able to control the sequelae left by PCM, even after the cure, justifying the search for new therapeutic options against PCM. In this context, the enzyme homoserine dehydrogenase of P. brasiliensis (PbHSD) was used to screen a library of natural products from the Zinc database using three different docking programs, i.e. Autodock, Molegro, and CLC Drugdiscovery Workbench. Three molecules (Zinc codes 2123137, 15967722, and 20611644) were better ranked than the homoserine substrate (HSE) and were used for in vitro trials of the minimum inhibitory concentration (MIC) and minimal fungicidal concentration (MCF). All three molecules presented a fungicidal profile with MICs/MCFs of 8, 32, and 128 μg mL−1, respectively. The two most promising molecules presented satisfactory results with wide therapeutic ranges in the cytotoxicity assays. Molecular dynamics simulations of PbHSD indicated that the ligands remained bound to the protein by a common mechanism throughout the simulation. The molecule with the lowest MIC value presented the highest number of contacts with the protein. The results presented in this work suggest that the molecule Zinc2123137 may be considered as a hit in the development of new therapeutic options for PCM.

Keywords

Paracoccidioides brasiliensis Virtual screening Homoserine dehydrogenase Drug discovery 

Notes

Funding information

This work was supported by Fundação Araucária (grant number 147/14 and 40/16), Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES, code 001), and National Council for Scientific and Technological Development – Brazil (CNPq grant number 305960/2015-6). The authors thank to LNCC for the computational facilities and FINEP/COMCAP/UEM for the equipment facilities.

Supplementary material

894_2019_4221_MOESM1_ESM.doc (10.6 mb)
ESM 1 (DOC 10821 kb)

References

  1. 1.
    Martinez R (2015) Epidemiology of Paracoccidioidomycosis. Rev. Inst. Med. Trop. Sao Paulo 57(Suppl 19):11–20.  https://doi.org/10.1590/S0036-46652015000700004 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shikanai-Yasuda MA, Mendes RP, Colombo AL et al (2017) Brazilian guidelines for the clinical management of paracoccidioidomycosis. Rev Soc Bras de Med Trop 50:715–740.  https://doi.org/10.1590/0037-8682-0230-2017 CrossRefGoogle Scholar
  3. 3.
    Mendes RP, Cavalcante RS, Marques SA et al (2017) Paracoccidioidomycosis: current perspectives from Brazil. The open microb j 11:224–282.  https://doi.org/10.2174/1874285801711010224 CrossRefGoogle Scholar
  4. 4.
    Martinez R (2017) New trends in paracoccidioidomycosis epidemiology. J Fungi 3.  https://doi.org/10.3390/jof3010001 CrossRefGoogle Scholar
  5. 5.
    Pecanha PM, de Souza S, Falqueto A et al (2016) Amphotericin B lipid complex in the treatment of severe paracoccidioidomycosis: a case series. Int. J. Antimicrob. Agents 48:428–430.  https://doi.org/10.1016/j.ijantimicag.2016.06.011 CrossRefPubMedGoogle Scholar
  6. 6.
    Ghannoum MA, Rice LB (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12:501–517CrossRefGoogle Scholar
  7. 7.
    Blau IW, Fauser AA (2000) Review of comparative studies between conventional and liposomal amphotericin B (Ambisome) in neutropenic patients with fever of unknown origin and patients with systemic mycosis. Mycoses 43:325–332.  https://doi.org/10.1046/j.1439-0507.2000.00577.x CrossRefPubMedGoogle Scholar
  8. 8.
    Abadio AK, Kioshima ES, Teixeira MM et al (2011) Comparative genomics allowed the identification of drug targets against human fungal pathogens. BMC Genomics 12:75.  https://doi.org/10.1186/1471-2164-12-75 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sagatova AA, Keniya MV, Wilson RK et al (2015) Structural insights into binding of the antifungal drug fluconazole to Saccharomyces cerevisiae lanosterol 14alpha-demethylase. Antimicrob. Agents Chemother. 59:4982–4989.  https://doi.org/10.1128/AAC.00925-15 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cunha BA (2001) Antibiotic side effects. Emerg. Med. Clin. North Am. 85:149–185.  https://doi.org/10.1016/s0025-7125(05)70309-6 CrossRefGoogle Scholar
  11. 11.
    Verweij PE, Snelders E, Kema GH et al (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect. Dis. 9:789–795.  https://doi.org/10.1016/S1473-3099(09)70265-8 CrossRefPubMedGoogle Scholar
  12. 12.
    Hahn RC, Morato Conceicao YT, Santos NL et al (2003) Disseminated paracoccidioidomycosis: correlation between clinical and in vitro resistance to ketoconazole and trimethoprim sulphamethoxazole. Mycoses 46:342–347.  https://doi.org/10.1046/j.1439-0507.2003.00901.x CrossRefGoogle Scholar
  13. 13.
    Donnici CL, Nogueira LJ, Araujo MH et al (2014) In vitro studies of the activity of dithiocarbamate organoruthenium complexes against clinically relevant fungal pathogens. Molecules 19:5402–5420.  https://doi.org/10.3390/molecules19045402 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 125:S3–S13.  https://doi.org/10.1016/j.amjmed.2011.11.001 CrossRefGoogle Scholar
  15. 15.
    Calich VL, Kashino SS (1998) Cytokines produced by susceptible and resistant mice in the course of Paracoccidioides brasiliensis infection. Braz. J. Med. Biol. Res. 31:615–623.  https://doi.org/10.1590/S0100-879X1998000500003 CrossRefPubMedGoogle Scholar
  16. 16.
    Jacques SL, Nieman C, Bareich D et al (2001) Characterization of yeast homoserine dehydrogenase, an antifungal target: the invariant histidine 309 is important for enzyme integrity. Biochim. Biophys. Acta 1544:28–41.  https://doi.org/10.1016/S0167-4838(00)00203-X CrossRefPubMedGoogle Scholar
  17. 17.
    Bagatin MC, Pimentel AL, Biavatti DC et al (2017) Targeting the homoserine dehydrogenase of Paracoccidioides species for treatment of systemic fungal infections. Antimicrob. Agents Chemother. 61.  https://doi.org/10.1128/AAC.00165-17
  18. 18.
    Ejim L, Mirza IA, Capone C et al (2004) New phenolic inhibitors of yeast homoserine dehydrogenase. Bioorg. Med. Chem. 12:3825–3830.  https://doi.org/10.1016/j.bmc.2004.05.009 CrossRefPubMedGoogle Scholar
  19. 19.
    Jastrzebowska K, Gabriel I (2015) Inhibitors of amino acids biosynthesis as antifungal agents. Amino Acids 47:227–249.  https://doi.org/10.1007/s00726-014-1873-1 CrossRefPubMedGoogle Scholar
  20. 20.
    Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52:1757–1768.  https://doi.org/10.1021/ci3001277 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30:2785–2791.  https://doi.org/10.1002/jcc.21256 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wolf LK (2009) New software and websites for the chemical enterprise. Chem & Eng News 87:32.  https://doi.org/10.1021/cen-v087n005.p032 CrossRefGoogle Scholar
  23. 23.
    Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49:3315–3321.  https://doi.org/10.1021/jm051197e CrossRefPubMedGoogle Scholar
  24. 24.
    Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781–1802.  https://doi.org/10.1002/jcc.20289 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mackerell Jr AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25:1400–1415.  https://doi.org/10.1002/jcc.20065 CrossRefPubMedGoogle Scholar
  26. 26.
    Zoete V, Cuendet MA, Grosdidier A (2011) SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 32:2359–2368.  https://doi.org/10.1002/jcc.21816 CrossRefGoogle Scholar
  27. 27.
    Neese F (2012) The ORCA program system. Comp Mol Sci 2(1):73–78.  https://doi.org/10.1002/wcms.81 CrossRefGoogle Scholar
  28. 28.
    Rodrigues-Vendramini FAV, Marschalk C, Toplak M et al (2018) Promising new antifungal treatment targeting chorismate synthase from Paracoccidioides brasiliensis. Antimicrob. Agents Chemother. 63:e01097–e01018.  https://doi.org/10.1128/AAC.01097-18 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Netto CF, Vegas VS, Sciannamea IM et al (1969) The polysaccharidic antigen from Paracoccidioides brasiliensis. Study of the time of cultivation necessary for the preparation of the antigen. Rev. Inst. Med. Trop. Sao Paulo 11:177–181 PMID:5824780PubMedGoogle Scholar
  30. 30.
    Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111:A3.B.1-3.  https://doi.org/10.1002/0471142735.ima03bs111 CrossRefGoogle Scholar
  31. 31.
    Sun N, Li D, Zhang Y et al (2017) Repurposing an inhibitor of ribosomal biogenesis with broad anti-fungal activity. Sci. Rep. 7:17014.  https://doi.org/10.1038/s41598-017-17147-x CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ishikawa M, Hashimoto Y (2011) Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J. Med. Chem. 54:1539–1554.  https://doi.org/10.1021/jm101356p CrossRefPubMedGoogle Scholar
  33. 33.
    Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44:235–249 PMID:11274893CrossRefGoogle Scholar
  34. 34.
    Fahr A, Liu X (2007) Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 4:403–416.  https://doi.org/10.1517/17425247.4.4.403 CrossRefPubMedGoogle Scholar
  35. 35.
    Yang NJ, Hinner MJ (2015) Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol. Biol. 1266:29–53.  https://doi.org/10.1007/978-1-4939-2272-7_3 CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Keiser MJ, Roth BL et al (2007) Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25:197–206.  https://doi.org/10.1038/nbt1284 CrossRefPubMedGoogle Scholar
  37. 37.
    Hati S, Tripathy S, Dutta PK et al (2016) Spiro[pyrrolidine-3, 3 -oxindole] as potent anti-breast cancer compounds: their design, synthesis, biological evaluation and cellular target identification. Sci. Rep. 6:32213.  https://doi.org/10.1038/srep32213 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Di L, Kerns E (2008) Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization1st edn. Academic pressGoogle Scholar
  39. 39.
    Kumari R, Kumar R, Lynn A, Consort OSDD (2014) g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54(7):1951–1962.  https://doi.org/10.1021/Ci500020m CrossRefGoogle Scholar
  40. 40.
    Gutierrez-de-Teran H, Aqvist J (2012) Linear interaction energy: method and applications in drug design. Methods Mol. Biol. 819:305–323.  https://doi.org/10.1007/978-1-61779-465-0_20 CrossRefPubMedGoogle Scholar
  41. 41.
    Ogata K, Yajima Y, Nakamura S et al (2018) Inhibition of homoserine dehydrogenase by formation of a cysteine-NAD covalent complex. Sci. Rep. 8:5749.  https://doi.org/10.1038/s41598-018-24063-1 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Skwarecki AS, Schielmann M, Martynow D et al (2018) Antifungal dipeptides incorporating an inhibitor of homoserine dehydrogenase. J. Pept. Sci. 24.  https://doi.org/10.1002/psc.3060 CrossRefGoogle Scholar
  43. 43.
    Andes D, Stamsted T, Conklin R (2001) Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob. Agents Chemother. 45:922–926.  https://doi.org/10.1128/AAC.45.3.922-926.2001 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Paulo Sérgio Alves Bueno
    • 1
  • Franciele Abigail Vilugron Rodrigues
    • 2
  • Jessyka Lima Santos
    • 3
  • Fernanda Canduri
    • 3
  • Débora Carina Biavatti
    • 1
  • Arethusa Lobo Pimentel
    • 1
  • Mariane Cristóvão Bagatin
    • 4
  • Érika Seki Kioshima
    • 2
  • Gisele de Freitas Gauze
    • 4
  • Flavio Augusto Vicente Seixas
    • 1
    Email author
  1. 1.Department of TechnologyUniversidade Estadual de MaringáUmuaramaBrazil
  2. 2.Department of Clinical Analysis and BiomedicineUniversidade Estadual de MaringáMaringáBrazil
  3. 3.São Carlos Institute of ChemistryUniversidade de São PauloSão CarlosBrazil
  4. 4.Department of ChemistryUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations