Advertisement

Journal of Molecular Modeling

, 25:363 | Cite as

What is the hydrophobic interaction contribution to the stabilization of micro-hydrated complexes of trimethylamine oxide (TMAO)? A joint DFT-D, QTAIM, and MESP study

  • Imene Derbali
  • Emilie-Laure Zins
  • Mohammad Esmaïl AlikhaniEmail author
Original Paper
  • 26 Downloads
Part of the following topical collections:
  1. QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)

Abstract

Micro-hydrated trimethylamine oxide (TMAO) has been investigated using a range-separated-hybrid functional including empirical dispersion correction. Electrophilic and nucleophilic sites on TMAO and water clusters have been identified using the molecular electrostatic potential (MESP). The nature of the chemical bonding in the different isomers of the micro-hydrated complexes has been investigated with the topological analysis of the electron density (QTAIM) method. For complexes containing one to four water molecules, the strongest intermolecular interactions consist in hydrogen bonding between the oxygen atom of the TMAO and hydrogen atoms of water molecules. From five water molecules, interactions between water molecules become the main source of stabilization of the most stable isomer. From four stationary points corresponding to the 1:1 (TMAO:H2O) complex, we determined the minimum distances between water molecules and central TMAO allowing the latter molecule to be encapsulated within a water clathrate-type cage. Optimization of TMAO encapsulated within two water cages (512 and 51262) suggests that only in the case of the 512 62 water cage the insertion of TMAO, the preservation of the hydrogen bonding between water molecules is energetically favorable. The interaction energy between one inserted TMAO and the 512 62 water cage was calculated to be around 150 kJ/mol with respect to the ground state of two partners. This result suggests that a thorough investigation of mono-hydrated complexes may be particularly relevant to identify the most suitable water cage for encapsulating a given solute.

Keywords

Micro-hydration Density functional theory Quantum theory of atoms in molecules (QTAIM) Molecular electrostatic potential (MESP) Electrophilic Nucleophilic Trimethylamine oxide (TMAO) 

Notes

Supplementary material

894_2019_4217_MOESM1_ESM.docx (10.3 mb)
ESM 1 (DOCX 10499 kb)

References

  1. 1.
    Franks F (1965) Hydrophobic hydration and the effect of hydrogen bonding solutes on the structure of water. Ann. N. Y. Acad. Sci. 125(2):277–289CrossRefGoogle Scholar
  2. 2.
    Stillinger FH (1973) Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. In The Physical Chemistry of Aqueous System (pp. 43–60). Springer, Boston, MAGoogle Scholar
  3. 3.
    Djikaev YS, Ruckenstein E (2016) Recent developments in the theoretical, simulational, and experimental studies of the role of water hydrogen bonding in hydrophobic phenomena. Adv. Colloid Interf. Sci. 235:23–45CrossRefGoogle Scholar
  4. 4.
    Hajari T, Bandyopadhyay S (2017) Water structure around hydrophobic amino acid side chain analogs using different water models. J. Chem.Phys. 146(22):225104CrossRefGoogle Scholar
  5. 5.
    Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437(7059):640CrossRefGoogle Scholar
  6. 6.
    Remsing RC, Weeks JD (2013) Dissecting hydrophobic hydration and association. J. Phys. Chem.B 117(49):15479–15491CrossRefGoogle Scholar
  7. 7.
    Ohto T, Hunger J, Backus EH, Mizukami W, Bonn M, Nagata Y (2017) Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations. Phys. Chem. Chem. Phys. 19(10):6909–6920CrossRefGoogle Scholar
  8. 8.
    Imoto S, Forbert H, Marx D (2018) Aqueous TMAO solutions as seen by theoretical THz spectroscopy: hydrophilic versus hydrophobic water. Phys. Chem. Chem. Phys. 20(9):6146–6158CrossRefGoogle Scholar
  9. 9.
    Stirnemann G, Duboué-Dijon E, Laage D (2017) Ab initio simulations of water dynamics in aqueous TMAO solutions: temperature and concentration effects. J. Phys. Chem.B 121(49):11189–11197CrossRefGoogle Scholar
  10. 10.
    Esser A, Belsare S, Marx D, Head-Gordon T (2017) Mode specific THz spectra of solvated amino acids using the AMOEBA polarizable force field. Phys. Chem. Chem. Phys. 19(7):5579–5590CrossRefGoogle Scholar
  11. 11.
    Munroe KL, Magers DH, Hammer NI (2011) Raman spectroscopic signatures of noncovalent interactions between trimethylamine N-oxide (TMAO) and water. J. Phys. Chem.B 115(23):7699–7707CrossRefGoogle Scholar
  12. 12.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdisciplinary Reviews: Computational Molecular Science 1(2):153–163Google Scholar
  13. 13.
    Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J. Mol. Model. 21(3):52CrossRefGoogle Scholar
  14. 14.
    Politzer P, Murray JS (2018) The Hellmann-Feynman theorem: a perspective. J. Mol. Model. 24(9):266CrossRefGoogle Scholar
  15. 15.
    Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371(6499):683CrossRefGoogle Scholar
  16. 16.
    Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: the electron localization function. Angew. Chem. International Ed. 36(17):1808–1832CrossRefGoogle Scholar
  17. 17.
    Silvi B (2015) The relevance of the ELF topological approach to the Lewis, Kossel, and Langmuir bond model. In The Chemical Bond II (pp. 213–247). Springer, ChamCrossRefGoogle Scholar
  18. 18.
    Gillespie RJ, Robinson EA (2007) Gilbert N. Lewis and the chemical bond: the electron pair and the octet rule from 1916 to the present day. J. Comput. Chem. 28(1):87–97CrossRefGoogle Scholar
  19. 19.
    Bader RF, Streitwieser A, Neuhaus A, Laidig KE, Speers P (1996) Electron delocalization and the Fermi hole. J. Am. Chem. Soc. 118(21):4959–4965CrossRefGoogle Scholar
  20. 20.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  21. 21.
    Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J. Chem.Phys. 125(23):234109CrossRefGoogle Scholar
  22. 22.
    Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J. Chem.Phys. 125(7):074106CrossRefGoogle Scholar
  23. 23.
    Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J. Chem.Phys. 126(15):154109CrossRefGoogle Scholar
  24. 24.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7):1456–1465CrossRefGoogle Scholar
  25. 25.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput. Chem. 23(6):597–604CrossRefGoogle Scholar
  26. 26.
    AIMAll (Version 17.11.14), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2017 (aim.tkgristmill.com)
  27. 27.
    Sun N, Li Z, Qiu N, Yu X, Zhang X, Li Y, Yang L, Luo K, Huang Q, Du S (2017) Ab initio studies on the clathrate hydrates of some nitrogen-and sulfur-containing gases. J. Phys. Chem.A 121(13):2620–2626CrossRefGoogle Scholar
  28. 28.
    Wang K, Li W, Li S (2014) Generalized energy-based fragmentation CCSD (T)-F12a method and application to the relative energies of water clusters (H2O)20. J. Chem. Theory Comput. 10(4):1546–1553CrossRefGoogle Scholar
  29. 29.
    Arunan E et al (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl. Chem. 83(8):1637–1641CrossRefGoogle Scholar
  30. 30.
    Pérez C, Neill JL, Muckle MT, Zaleski DP, Peña I, Lopez JC, Alonso JL, Pate BH (2015) Water–water and water–solute interactions in microsolvated organic complexes. Angew. Chem. International Ed. 127(3):993–996CrossRefGoogle Scholar
  31. 31.
    Riffet V, Frison G, Bouchoux G (2018) Quantum-chemical modeling of the first steps of the Strecker synthesis: from the gas-phase to water solvation. J. Phys. Chem.A 122(6):1643–1657CrossRefGoogle Scholar
  32. 32.
    Fanourgakis GS, Apra E, Xantheas SS (2004) High-level ab initio calculations for the four low-lying families of minima of (H2O)20. I. Estimates of MP2/CBS binding energies and comparison with empirical potentials. J. Chem. Phys. 121(6):2655–2663CrossRefGoogle Scholar
  33. 33.
    Xantheas SS (2000) Cooperativity and hydrogen bonding network in water clusters. Chem. Phys. 258(2–3):225–231CrossRefGoogle Scholar
  34. 34.
    A discussion on this point, as well as "limit cases" are presented in the following article: Guevara-Vela, J. M. et al. (2016). Hydrogen bond cooperativity and anticooperativity within the water hexamer. Phys. Chem. Chem. Phys., 18(29), 19557–19566CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Imene Derbali
    • 1
  • Emilie-Laure Zins
    • 1
  • Mohammad Esmaïl Alikhani
    • 1
    Email author
  1. 1.Sorbonne Université, CNRS, De la Molécule aux Nano-Objets: Réactivité, Interactions SpectroscopiesParisFrance

Personalised recommendations