Journal of Molecular Modeling

, 25:371 | Cite as

Novel triplet germylenes in focus: normal vs. abnormal triplet exocyclic tetrazol-5-vinylidene germylenes at DFT

  • Samaneh Ashenagar
  • Mohamad Zaman KassaeeEmail author
  • Peter T. Cummings
Original Paper


Substituent effects on stability (assumed as the singlet and triplet energy gaps, ΔΕS-T) of novel 1,4-disubstituted-tetrazole-5-vinylidene germylenes (normal, 1R) and their corresponding 1,3-disubstituted-tetrazole-5-vinylidene germylenes (abnormal, 2R) are computed and compared, at B3LYP/6-311++G** and M06/6-311++G**, where R = H, CN, CF3, F, SH, C6H6, OMe, and OH. Interestingly, every triplet vinylidene germylene shows more stability than its corresponding singlet. Also, every triplet abnormal isomer (2R) emerges to be more stable than its corresponding normal (1R). All abnormal 2R isomers show broader band gaps (ΔEHOMO–LUMO) and higher nucleophilicity (N), but less electrophilicity (ω) than their corresponding normal 1R isomers. The NICS (nuclear-independent chemical shift) results indicate that every 1R (except singlet 2Ph) emerges more aromatic than its corresponding 2R. Our Hammet studies indicate that 1R is more sensitive to the electronic effects of substituents, R, than 2R. Electron-donating species increase N in both 1R and 2R, while electron-withdrawing groups increase stability.


Tetrazole-vinylidene germylene Band gap Singlet-triplet energy gap Triplet state Electronic effect 


Supplementary material

894_2019_4213_MOESM1_ESM.docx (46 kb)
ESM 1 (DOCX 45 kb).


  1. 1.
    Lee HM, Zeng JY, Hu CH, Lee MT (2004) A new tridentate pincer phosphine/N-heterocyclic carbene ligand: palladium complexes, their structures, and catalytic activities. Inorg. Chem. 43(21):6822–6829PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Skander M, Retailleau P, Bourrié B, Schio L, Mailliet P, Marinetti A (2010) N-heterocyclic carbene-amine Pt (II) complexes, a new chemical space for the development of platinum-based anticancer drugs. J. Med. Chem. 53(5):2146–2154PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Raynaud J, Liu N, Fèvre M, Gnanou Y, Taton D (2011) No matter the order of monomer addition for the synthesis of well-defined block copolymers by sequential group transfer polymerization using N-heterocyclic carbenes as catalysts. Polym. Chem. 2(8):1706–1712CrossRefGoogle Scholar
  4. 4.
    Budagumpi S, Endud S (2013) Group XII metal–N-heterocyclic carbene complexes: synthesis, structural diversity, intramolecular interactions, and applications. Organometallics 32(6):1537–1562CrossRefGoogle Scholar
  5. 5.
    Telitel S, Schweizer S, Morlet-Savary F, Graff B, Tschamber T, Blanchard N, Fouassier JP, Lelli M, Lacôte E, Lalevée J (2013) Soft photopolymerizations initiated by dye-sensitized formation of NHC-boryl radicals under visible light. Macromolecules 46(1):43–48CrossRefGoogle Scholar
  6. 6.
    Wanzlick HW, Schikora E (1960) Ein neuer Zugang zur Carben-Chemie. Angew. Chem. 72(14):494–494CrossRefGoogle Scholar
  7. 7.
    Arduengo III AJ, Harlow RL, Kline M (1991) A stable crystalline carbene. J. Am. Chem. Soc. 113(1):361–363CrossRefGoogle Scholar
  8. 8.
    Arduengo III AJ, Dias HVR, Harlow RL, Kline M (1992) Electronic stabilization of nucleophilic carbenes. J. Am. Chem. Soc. 114(14):5530–5534CrossRefGoogle Scholar
  9. 9.
    Furstner A, Krause H, Ackermann L, Lehmann CW (2001) N-heterocyclic carbenes can coexist with alkenes and C–H acidic sites. Chem. Commun. 21:2240–2241CrossRefGoogle Scholar
  10. 10.
    Otto M, Conejero S, Canac Y, Romanenko VD, Rudzevitch V, Bertrand G (2004) Mono-and diaminocarbenes from chloroiminium and-amidinium salts: synthesis of metal-free bis (dimethylamino) carbene. J. Am. Chem. Soc. 126(4):1016–1017PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Igau A, Baceiredo A, Trinquier G, Bertrand G (1989) [Bis (diisopropylamino) phosphino] trimethylsilylcarbene: a stable nucleophilic carbene. Angew Chem Int Ed Engl 28(5):621–622CrossRefGoogle Scholar
  12. 12.
    Igau A, Grutzmacher H, Baceiredo A, Bertrand G (1988) Analogous. alpha.,. alpha.’-bis-carbenoid, triply bonded species: synthesis of a stable. lambda. 3-phosphino carbene-. lambda. 5-phosphaacetylene. J. Am. Chem. Soc. 110(19):6463–6466CrossRefGoogle Scholar
  13. 13.
    Herrmann WA, Denk M, Behn J, Scherer W, Klingan FR, Bock H, Solouki B, Wagner M (1992) Stable cyclic germanediyls (“cyclogermylenes”): synthesis, structure, metal complexes, and thermolyses. Angew. Chem. Int. Ed. 31(11):1485–1488CrossRefGoogle Scholar
  14. 14.
    Denk M, Lennon R, Hayashi R, West R, Belyakov AV, Verne HP, Haaland A, Wagner M, Metzler N (1994) Synthesis and structure of a stable silylene. J. Am. Chem. Soc. 116(6):2691–2692CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41(2):157–167PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Meller A, Gräbe CP (1985) Synthese und Isolierung neuer Germanium (II)-Verbindungen und freier Germylene. Chem Ber 118(5):2020–2029CrossRefGoogle Scholar
  17. 17.
    Herrmann WA, Denk M, Behm J, Scherer W, Klingan FR, Bock H, Solouki B, Wagner M (1992) Stabile, cyclische Germandiyle (“cyclogermylenes”): Herstellung, Molekülstruktur, Metallkomplexe und Thermolysen. Angew. Chem. 104(11):1489–1492CrossRefGoogle Scholar
  18. 18.
    Heinemann C, Herrmann WA, Thiel W (1994) Theoretical study of stable silylenes and germylenes. J. Organomet. Chem. 475(1–2):73–84CrossRefGoogle Scholar
  19. 19.
    Kühl O (2004) N-heterocyclic germylenes and related compounds. Coordin Chem Rev 248(5–6):411–427CrossRefGoogle Scholar
  20. 20.
    Bertrand G, Melaimi M, Soleilhavoup M (2010) Stable cyclic carbenes and related species beyond diaminocarbenes. Angew Chem Int Edn 49(47):8810–8849CrossRefGoogle Scholar
  21. 21.
    Veszprémi T, Nyulászi L, Kárpáti T (1996) Toward stable silylenes. J. Phys. Chem. 100(15):6262–6265CrossRefGoogle Scholar
  22. 22.
    Kassaee MZ, Buazar F, Soleimani-Amiri S (2008) Triplet germylenes with separable minima at ab initio and DFT levels. J. Mol. Struct. THEOCHEM 866(1–3):52–57CrossRefGoogle Scholar
  23. 23.
    Gaspar PP, Xiao M, Pae DH, Berger DJ, Haile T, Chen T, Lei D, Winchester WR, Jiang P (2002) The quest for triplet ground state silylenes. J. Organomet. Chem. 646(1–2):68–79CrossRefGoogle Scholar
  24. 24.
    Kassaee MZ, Ghambarian M, Musavi SM (2005) In search of triplet ground state GeCNX germylenes (X= H, F, Cl, and Br): an ab initio and DFT study. J. Organomet. Chem. 690(21–22):4692–4703CrossRefGoogle Scholar
  25. 25.
    Kassaee MZ, Ashenagar S (2018) Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1= H, Li, Na, K; M2= Be, Mg, Ca; M3= H, F, Cl, Br). J. Mol. Model. 24(2):49PubMedCrossRefGoogle Scholar
  26. 26.
    Driess M, Yao S, Brym M, van Wüllen C (2006) A heterofulvene-like germylene with a betain reactivity. Angew. Chem. Int. Ed. 45(26):4349–4352CrossRefGoogle Scholar
  27. 27.
    Driess M, Yao S, Brym M, van Wüllen C, Lentz D (2006) A new type of N-heterocyclic silylene with ambivalent reactivity. J. Am. Chem. Soc. 128(30):9628–9629PubMedCrossRefGoogle Scholar
  28. 28.
    Pintér B, Veszprémi T (2008) Synthesizability of the heavy analogues of disubstituted cyclopropenylidene: a theoretical study. Organometallics 27(21):5571–5576CrossRefGoogle Scholar
  29. 29.
    Momeni MR, Shakib FA (2011) Theoretical description of triplet silylenes evolved from H2Si= Si. Organometallics 30(18):5027–5032CrossRefGoogle Scholar
  30. 30.
    Rezaee N, Ahmadi A, Kassaee MZ (2016) Nucleophilicity of normal and abnormal N-heterocyclic carbenes at DFT: steric effects on tetrazole-5-ylidenes. RSC Adv. 6(16):13224–13233CrossRefGoogle Scholar
  31. 31.
    Kassaee MZ, Musavi SM, Ghambarian M, Buazar F (2005) Multiplicity vs. stability in C2HP carbenes and their halogenated analogues: an ab initio and DFT study. J. Mol. Struct. THEOCHEM 726(1–3):171–181CrossRefGoogle Scholar
  32. 32.
    Kassaee MZ, Ghambarian M, Musavi SM (2007) Halogen switching of azacarbenes C2NH ground states at ab initio and DFT levels. Heteroat. Chem. 19(4):377–388CrossRefGoogle Scholar
  33. 33.
    Kassaee MZ, Musavi SM, Buazar F (2005) An ab initio and DFT comparative study of electronic effects on spin multiplicities and structures of X–C2N carbenes. J. Mol. Struct. THEOCHEM 728(1–3):15–24CrossRefGoogle Scholar
  34. 34.
    Kassaee MZ, Ghambarian M, Musavi SM, Shakib FA, Momeni MR (2009) A theoretical investigation into dimethylcarbene and its diamino and diphosphino analogs: effects of cyclization and unsaturation on the stability and multiplicity. J. Phys. Org. Chem. 22(10):919–924CrossRefGoogle Scholar
  35. 35.
    Kassaee MZ, Momeni MR, Shakib FA, Ghambarian M, Musavi SM (2010) Novel α-spirocyclic (alkyl)(amino) carbenes at the theoretical crossroad of flexibility and rigidity. Struct. Chem. 21(3):593–598CrossRefGoogle Scholar
  36. 36.
    Kassaee MZ, Shakib FA, Momeni MR, Ghambarian M, Musavi SM (2010) Carbenes with reduced heteroatom stabilization: a computational approach. J Org Chem 75(8):2539–2545PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kassaee MZ, Ghambarian M, Shakib FA, Momeni MR (2011) From acyclic dialkylcarbene to the unsaturated cyclic heteroatom substituted ones: a survey of stability. J. Phys. Org. Chem. 24(5):351–359CrossRefGoogle Scholar
  38. 38.
    Kassaee MZ, Momeni MR, Shakib FA, Najafi Z, Zandi H (2011) Effects of α-cyclopropyl on heterocyclic carbenes stability at DFT. J. Phys. Org. Chem. 24(11):1022–1029CrossRefGoogle Scholar
  39. 39.
    Kassaee MZ, Najafi Z, Shakib FA, Momeni MR (2011) Stable silylenes with acyclic, cyclic, and unsaturated cyclic structures: effects of heteroatoms and cyclopropyl α-substituents at DFT. J. Organomet. Chem. 696(10):2059–2064CrossRefGoogle Scholar
  40. 40.
    Kendali RA, Dunning Jr TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. Chem. Phys. 96(9):6796–6806Google Scholar
  41. 41.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120(1–3):215–241CrossRefGoogle Scholar
  42. 42.
    Becke AD (1998) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6):3098CrossRefGoogle Scholar
  43. 43.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  44. 44.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2):785CrossRefGoogle Scholar
  45. 45.
    Chong DP (ed) (1997) Recent advances in density functional methods, parts I and II. World Scientific, SingaporeGoogle Scholar
  46. 46.
    Barone V, Bencini A (eds) (1999) Recent advances in density functional methods, part III. World Scientific, SingaporeGoogle Scholar
  47. 47.
    Adamo C, di Matteo A, Barone V (1999) From classical density functionals to adiabatic connection methods. The state of the art. Adv. Quantum Chem. 36:45–75CrossRefGoogle Scholar
  48. 48.
    Ess DH, Houk KN (2005) Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions. J. Phys. Chem. A 109:9542–9553PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Aysin RR, Bukalov SS, Leites LA, Zabula AV (2017) Optical spectra, electronic structure and aromaticity of benzannulated Nheterocyclic carbene and its analogues of the type C6H4(NR)2E: (E = Si, Ge, Sn, Pb). Dalton Trans. 46:8774–8781PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Zhang MX, Zhang MJ, Li WZ, Li QZ, Cheng JB (2015) Structure of H2GeFMgF and its insertion reactions with RH (R = F, OH, NH2). J. Theor. Comput. Chem. 14:01–13Google Scholar
  51. 51.
    BaoW LY, Lu X (2013) Density functional theory study of mechanism of forming a spiro-Ge-heterocyclic ring compound from H2Ge=Ge: and ethane. Struct. Chem. 24(5):1615–1619CrossRefGoogle Scholar
  52. 52.
    LiWZ YBF, Li QZ, Cheng JB (2013) The insertion reactions of the germylenoid H2GeLiF with CH3X (X = F, cl, Br). J. Organomet. Chem. 724:163–166CrossRefGoogle Scholar
  53. 53.
    Yan B, LiW XC, Li Q, Cheng J (2013) A new reaction mode of germanium-silicon bond formation: insertion reactions of H2GeLiF with SiH3X (X = F, cl, Br). J. Mol. Model. 19(10):4537–4543PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL (1993) GAMESS program package. J. Comput. Chem. 14:1347–1363CrossRefGoogle Scholar
  55. 55.
    Sobolewski AL, Domcke W (2002) Ab initio investigation of the structure and spectroscopy of hydronium− water clusters. J. Phys. Chem. A 106(16):4158–4167CrossRefGoogle Scholar
  56. 56.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford Univ, New York, p 333Google Scholar
  57. 57.
    Sulzbach HM, Bolton E, Lenoir D, Schleyer PV, Schaefer HF (1996) Tetra-tert-butylethylene: an elusive molecule with a highly twisted double bond. Can it be made by carbene dimerization? J. Am. Chem. Soc. 118(41):9908–9914CrossRefGoogle Scholar
  58. 58.
    Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J. Am. Chem. Soc. 121(9):1922–1924CrossRefGoogle Scholar
  59. 59.
    Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. Org. Chem. 73(12):4615–4624CrossRefGoogle Scholar
  60. 60.
    Worthington SE, Cramer CJ (1997) Density functional calculations of the influence of substitution on singlet–triplet gaps in carbenes and vinylidenes. J. Phys. Org. Chem. 10(10):755–767CrossRefGoogle Scholar
  61. 61.
    Akbari A, Golzadeh B, Arshadi S, Kassaee MZ (2015) A quest for stable 2, 5-bis (halobora) cyclopentenylidene and its Si, Ge, Sn and Pb analogs at theoretical levels. RSC Adv. 5(54):43319–43327CrossRefGoogle Scholar
  62. 62.
    Schaper LA, Wei X, Altmann PJ, Öfele K, PÖthig A, Drees M, Mink J, Herdtweck E, Bechlars B, Herrmann WA, Kühn FE (2013) Synthesis and comparison of transition metal complexes of abnormal and normal tetrazolylidenes: a neglected ligand species. Inorg. Chem. 52(12):7031–7044PubMedCrossRefGoogle Scholar
  63. 63.
    Murray JS, Sen K (eds.) (1996) Molecular electrostatic potentials: concepts and applications. (Vol. 3) ElsevierGoogle Scholar
  64. 64.
    Alkorta I, Perez JJ (1996) Molecular polarization potential maps of the nucleic acid bases. Int. J. Quantum Chem. 57(1):123–135CrossRefGoogle Scholar
  65. 65.
    Scrocco E, Tomasi J, Lowdin P (1978) Advances in quantum chemistry, vol 2. Academic Press, New YorkGoogle Scholar
  66. 66.
    Luque FJ, Orozco M, Bhadane PK, Gadre SR (1993) SCRF calculation of the effect of water on the topology of the molecular electrostatic potential. J. Phys. Chem. 97(37):9380–9384CrossRefGoogle Scholar
  67. 67.
    Šponer J, Hobza P (1996) DNA base amino groups and their role in molecular interactions: ab initio and preliminary density functional theory calculations. Int. J. Quantum Chem. 57(5):959–970CrossRefGoogle Scholar
  68. 68.
    Schleyer PV, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118(26):6317–6318PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Samaneh Ashenagar
    • 1
  • Mohamad Zaman Kassaee
    • 1
    Email author
  • Peter T. Cummings
    • 2
  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran
  2. 2.Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations